Statistical Science

De Finetti's contribution to probability and statistics

Donato Michele Cifarelli and Eugenio Regazzini

Full-text: Open access

Abstract

This paper summarizes the scientific activity of de Finetti in probability and statistics. It falls into three sections: Section 1 includes an essential biography of de Finetti and a survey of the basic features of the scientific milieu in which he took the first steps of his scientific career; Section 2 concerns de Finetti's work in probability: (a) foundations, (b) processes with independent increments, (c) sequences of exchangeable random variables, and (d) contributions which fall within other fields; Section 3 deals with de Finetti's contributions to statistics: (a) description of frequency distributions, (b) induction and statistics, (c) probability and induction, and (d) objectivistic schools and theory of decision. Many recent developments of de Finetti's work are mentioned here and briefly described.

Article information

Source
Statist. Sci., Volume 11, Number 4 (1996), 253-282.

Dates
First available in Project Euclid: 17 September 2002

Permanent link to this document
https://projecteuclid.org/euclid.ss/1032280303

Digital Object Identifier
doi:10.1214/ss/1032280303

Mathematical Reviews number (MathSciNet)
MR1445983

Zentralblatt MATH identifier
0955.01552

Keywords
Associative mean Bayesian nonparametric statistics Bayes-Laplace paradigm completely additive probabilities correlation and monotone dependence exchangeable and partially exchangeable random variables finitely additive probabilities gambler's ruin Glivenko-Cantelli theorem infinitely decomposable laws predictive inference prevision principle of coherence processes with independent increments reasoning by induction statistical decision subjective probability utility function

Citation

Cifarelli, Donato Michele; Regazzini, Eugenio. De Finetti's contribution to probability and statistics. Statist. Sci. 11 (1996), no. 4, 253--282. doi:10.1214/ss/1032280303. https://projecteuclid.org/euclid.ss/1032280303


Export citation

References

  • Accardi, L. and Lu, Y. G. (1993). A continous version of de Finetti's theorem. Ann. Probab. 21 1478-1493.
  • Aldous, D. (1981). Representations for partially exchangeable array s of random variables. J. Multivariate Anal. 11 581- 598.
  • Aldous, D. (1985). Exchangeability and related topics. Ecole d'Et´e de Probabilit´es de Saint Flour XIII. Lecture Notes in Math. 1117. Springer, Berlin.
  • Barlow, R. E. (1992). Introduction to de Finetti (1937) foresight: its logical laws, its subjective sources. In Breakthroughs in Statistics 1. Foundations and Basic Theory (S. Kotz and N. L. Johnson, eds.) 127-133. Springer, New York.
  • Barlow, R. E., Wechsler, S. and Spizzichino, F. (1988). De Finetti's approach to group decision making. In Bayesian Statistics 3 (J. M. Bernardo, M. H. DeGroot, D. V. Lindley and A. F. M. Smith, eds.) 1-15. Oxford Univ. Press.
  • Berti, P., Regazzini, E. and Rigo, P. (1990). De Finetti's coherence and complete predictive inferences. Technical Report 90.5, CNR-IAMI, Milano.
  • Berti, P., Regazzini, E. and Rigo, P. (1992). Finitely additive Radon-Nikod´ym theorem and concentration of a probability with respect to a probability. Proc. Amer. Math. Soc. 114 1069-1085.
  • Berti, P., Regazzini, E. and Rigo, P. (1994). Coherent prevision of random elements. Technical Report 94.15, CNR-IAMI, Milano.
  • Berti, P., Regazzini, E. and Rigo, P. (1996). Well-calibrated, coherent forecasting sy stems. Theory Probab. Appl. To appear.
  • Berti, P. and Rigo, P. (1989). Conglomerabilit a, disintegrabilit a e coerenza. Serie Ric. Teor. 11, Dip. Statist., Univ. Firenze.
  • Berti, P. and Rigo, P. (1994). A Glivenko-Cantelli theorem for exchangeable random variables. Statistics and Probability Letters. To appear.
  • Bj ¨ork, T. and Johansson, B. (1993). On theorems of de Finetti ty pe for continous time stochastic processes. Scand. J. Statist. 20 289-312. Blum, J., Chernoff, J., Rosenblatt, M. and Teicher, H.
  • (1958). Central limit theorems for interchangeable processes. Canad. J. Math. 10 222-229.
  • Bochner, S. (1939). Additive set functions on groups. Ann. Math. 40 769-799.
  • B ¨uhlmann, H. (1958). Le probl eme "limite centrale" pour les variables al´eatoires ´echangeable. C. R. Acad. Sci. Paris 246 534-536.
  • B ¨uhlmann, H. (1960). Austauschbare stochastische Variabeln und ihre Grenzwerts¨atze. Univ. California Publications in Statistic 3 1-35.
  • Campanino, M. and Spizzichino, F. (1981). Prediction, sufficiency and representation of infinite sequences of exchangeable random variables. Technical report, Inst. Mathematics "G. Castelnuovo," Univ. Roma. Cantelli, F. P. (1917a). Sulla probabilit a come limite delle frequenze. Atti della Reale Accademia Nationale dei Lincei, Serie V, Rendiconti 26 39-45. Cantelli, F. P. (1917b). Su due applicazioni d'un teorema di G. Boole alla statistica matematica. Atti della Reale Accademia Nationale dei Lincei, Serie V, Rendiconti 26 295- 302.
  • Cantelli, F. P. (1932). Una teoria astratta del calcolo delle probabilit a. Giorn. Istit. Ital. Attuari 3 257-265. Cantelli, F. P. (1933a). Considerazioni sulla legge uniforme dei grandi numeri e sulla generalizzazione di un fondamentale teorema del signor L´evy. Giorn. Istit. Ital. Attuari 4 327-350. Cantelli, F. P. (1933b). Sulla determinazione empirica delle leggi di probabilit a. Giorn. Istit. Ital. Attuari 4 421-424.
  • Castellano, V. (1965). Corrado Gini: a memoir. Metron 24 3-84.
  • Castelnuovo, G. (1919). Calcolo delle Probabilit a e Applicazioni, 1st ed. Soc. Ed. Dante Alighieri, Milano.
  • Chisini, O. (1929). Sul concetto di media. Periodico di Matematiche 9 105-116.
  • Cifarelli, D. M. and Regazzini, E. (1982). Some considerations about mathematical statistics teaching methodology suggested by the concept of exchangeability. In Exchangeability in Probability and Statistics (G. Koch and F. Spizzichino, eds.) 185-205. North-Holland, Amsterdam.
  • Cifarelli, D. M. and Regazzini, E. (1987). On a general definition of concentration function. Sankhy¯a Ser. B 49 307-319.
  • Cifarelli, D. M. and Regazzini, E. (1990). Distribution functions of means of a Dirichlet process. Ann. Statist. 18 429- 442. [Correction: Ann. Statist. (1994) 22 1633-1634.]
  • Cifarelli, D. M. and Regazzini, E. (1993). Some remarks on the distribution functions of means of a Dirichlet process. Technical Report 93.4, CNR-IAMI, Milano.
  • Cram´er, H. (1934). Su un teorema relativo alla legge uniforme dei grandi numeri. Giorn. Istit. Ital. Attuari 5 3-15.
  • Cram´er, H. (1935). Sugli sviluppi asintotici di funzioni di ripartizione in serie di polinomi di Hermite. Giorn. Istit. Ital. Attuari 6 141-157.
  • Crisma, L. (1971). Alcune valutazioni quantitative interessanti la proseguibilit a di processi aleatori scambiabili. Rend. Istit. Mat. Univ. Trieste 3 96-124.
  • Crisma, L. (1982). Quantitative analysis of exchangeability in alternative processes. In Exchangeability in Probability and Statistics (G. Koch and F. Spizzichino, eds.) 207-216. NorthHolland, Amsterdam.
  • Daboni, L. (1953). Considerazioni geometriche sulla condizione di equivalenza per una classe di eventi. Giorn. Istit. Ital. Attuari 16 58-65.
  • Daboni, L. (1975). Caratterizzazione delle successioni (funzioni) completamente monotone in termini di rappresentabilit a delle funzioni di sopravvivenza di particolari intervalli scambiabili tra successi (arrivi) contigui. Rend. Mat. 8 399-412.
  • Daboni, L. (1982). Exchangeability and completely monotone functions. In Exchangeability in Probability and Statistics (G. Koch and F. Spizzichino, eds.) 39-45. North-Holland, Amsterdam.
  • Daboni, L. and Wedlin, A. (1982). Statistica. Utet, Torino.
  • David, H. A. (1981). Order Statistics, 2nd ed. Wiley, New York.
  • Dawid, A. P. (1978). Extendibility of spherical matrix distributions. J. Multivariate Anal. 8 567-572. de Finetti, B. See separate list following the References section.
  • De Moivre, A. (1711). De mensura sortis. Philosophical Transactions of the Roy al Society (London) 27 213-264.
  • Diaconis, P. (1977). Finite forms of de Finetti's theorem on exchangeability. Sy nth ese 36 271-281.
  • Diaconis, P. (1988). Recent progress on de Finetti's notions of exchangeability. In Bayesian Statistics 3 (J. M. Bernardo, M. H. DeGroot, D. V. Lindley and A. F. M. Smith, eds.) 111- 125. Oxford Univ. Press.
  • Diaconis, P., Eaton, M. L. and Lauritzen, S. L. (1992). Finite de Finetti theorems in linear models and multivariate analysis. Scand. J. Statist. 19 289-315. Diaconis, P. and Freedman, D. (1980a). de Finetti's theorem for Markov chains. Ann. Probab. 8 115-130. Diaconis, P. and Freedman, D. (1980b). Finite exchangeable sequences. Ann. Probab. 8 745-764.
  • Diaconis, P. and Freedman, D. (1984). Partial exchangeability and sufficiency. In Proceedings of the Indian Statistical Institute Golden Jubilee International Conference on Statistics: Applications and New Directions (J. K. Ghosh and J. Roy, eds.) 205-236. Indian Statistical Institute, Calcutta.
  • Diaconis, P. and Freedman, D. (1987). A dozen de Finetti-sty le results in search of a theory. Ann. Inst. H. Poincar´e Probab. Statist. 23 394-423.
  • Diaconis, P. and Freedman, D. (1988). Conditional limit theorems for exponential families and finite versions of de Finetti's theorem. J. Theoret. Probab. 1 381-410.
  • Diaconis, P. and Freedman, D. (1990). Cauchy's equation and de Finetti's theorem. Scand. J. Statist. 17 235-250.
  • Doob, J. L. (1953). Stochastic Processes. Wiley, New York.
  • Dubins, L. E. (1975). Finitely additive conditional probabilities, conglomerability and disintegrations. Ann. Probab. 3 89-99.
  • Dubins, L. E. (1983). Some exchangeable probabilities which are singular with respect to all presentable probabilities. Z. Wahrsch. Verw. Gebiete 64 1-6.
  • Dubins, L. E. and Freedman, D. (1979). Exchangeable processes need not be mixtures of independent identically distributed random variables. Z. Wahrsch. Verw. Gebiete 48 115-132.
  • Eaton, M. L., Fortini, S. and Regazzini, E. (1993). Spherical sy mmetry: an elementary justification. Journal of the Italian Statistical Society 2 1-16.
  • Epifani, I. and Lijoi, A. (1995). Some considerations on a version of the law of the iterated logarithm due to Cantelli. Technical Report 95.21, CNR-IAMI, Milano.
  • Ferguson, T. S. (1973). A bay esian analysis of some nonparametric problems. Ann. Statist. 1 209-230.
  • Ferguson, T. S., Phadia, E. G. and Tiwari, R. C. (1992). Bayesian nonparametric inference. In Current Issues in Statistical Inference: Essay s in Honour of D. Basu (M. Ghosh and P. K. Pathak, eds.). IMS, Hay ward, CA.
  • Fichera, G. (1987). Interventi invitati al Convegno "Ricordo di Bruno de Finetti Professore nell'Ateneo triestino." Atti 26-31. Dip. Matematica Applicata alle Scienze Economiche Statistiche e Attuariali, Univ. Trieste Pub. No. 1.
  • Fisher, R. A. (1921). On "probable error" of a coefficient of correlation deduced from a small sample. Metron 1 3-32.
  • Fisher, R. A. (1925). Applications of "Student's distribution." Metron 5 90-120.
  • Fortini, S., Ladelli, L. and Regazzini, E. (1996). A central limit problem for partially exchangeable random variables. Theory Probab. Appl. 41 353-379.
  • Fortini, S. and Ruggeri, F. (1994). On defining neighbourhoods of measures through the concentration function. Sankhy¯a Ser. A 56 444-457. Fr´echet, M. (1930a). Sur l'extension du th´eor eme des probabilit´es totales au cas d'une suite infinie d'´ev´enements. Rendiconti del Reale Istituto Lombardo di Scienze e Lettere 63 899-900. Fr´echet, M. (1930b). Sur l'extension du th´eor eme des probabilit´es totales au cas d'une suite infinie d'´ev´enements. Rendiconti del Reale Istituto Lombardo di Scienze e Lettere 63 1059-1062. Fr´echet, M. (1930c). Sur la convergence "en probabilit´e." Metron 8 3-50.
  • Fr´echet, M. and Halbwachs, M. (1925). Le calcul des Probabilit´es a la Porte´e de Tous. Dunod, Paris. Freedman, D. (1962a). Mixtures of Markov processes. Ann. Math. Statist. 33 114-118. Freedman, D. (1962b). Invariance under mixing which generalize de Finetti's theorem. Ann. Math. Statist. 33 916-923.
  • Freedman, D. (1963). Invariants under mixing which generalize de Finetti's theorem: continuous time parameter. Ann. Math. Statist. 34 1194-1216.
  • Freedman, D. (1980). A mixture of independent identically distributed random variables need not admit a regular conditional probability given the exchangeable -field. Z. Wahrsch. Verw. Gebiete 51 239-248.
  • Freedman, D. (1984). De Finetti's theorem in a continuous time. Technical Report 36, Dept. Statistics, Univ. California, Berkeley.
  • Gini, C. (1911). Considerazioni sulle probabilit a a posteriori ed applicazioni al rapporto dei sessi nelle nascite umane. Studi economico-giuridici dell'Universit a di Cagliari anno III.
  • Gini, C. (1939). I pericoli della statistica. Supplemento Statistico ai Nuovi Problemi di Politica, Storia ed Economia 5 1-44.
  • Glivenko, V. (1933). Sulla determinazione empirica delle leggi di probabilit a. Giorn. Istit. Ital. Attuari 4 92-99.
  • Glivenko, V. (1936). Sul teorema limite della teoria delle funzioni caratteristiche. Giorn. Istit. Ital. Attuari 7 160-167.
  • Glivenko, V. (1938). Th´eorie G´en´erale des Structures. Hermann, Paris.
  • Haag, J. (1928). Sur un probl eme g´en´eral de probabilit´es et ses diverses applications. In Proceedings of the International Congress of Mathematicians 659-674. Univ. Toronto Press.
  • Hardy, G. H., Littlewood, J. E. and P ´oly a, G. (1934). Inequalities. Cambridge Univ. Press.
  • Hewitt, E. and Savage, L. J. (1955). Sy mmetric measures on Cartesian products. Trans. Amer. Math. Soc. 80 470-501.
  • Holzer, S. (1985). On coherence and conditional prevision. Boll. Un. Mat. Ital. C 6 1 441-460.
  • Horn, A. and Tarski, A. (1948). Measures on Boolean algebras. Trans. Amer. Math. Soc. 64 467-497.
  • Kallenberg, O. (1973). Canonical representations and convergence criteria for processes with interchangeable increments. Z. Wahrsch. Verw. Gebiete 27 23-36.
  • Kallenberg, O. (1974). Path properties of processes with independent and interchangeable increments. Z. Wahrsch. Verw. Gebiete 28 257-271.
  • Kallenberg, O. (1975). Infinitely divisible processes with interchangeable increments and random measures under convolution. Z. Wahrsch. Verw. Gebiete 32 309-321.
  • Kallenberg, O. (1982). Characterizations and embedding properties in exchangeability. Z. Wahrsch. Verw. Gebiete 60 249- 281.
  • Kendall, M. G. (1938). A new measure of rank correlation. Biometrika 30 81-93. Khinchin, A. (1932a). Sulle successioni stazionarie di eventi. Giorn. Istit. Ital. Attuari 3 267-272. Khinchin, A. (1932b). Sur les classes d'´ev´enements ´equivalentes. Mathematiceskii Sbornik, Recueil. Math. Moscou 39 40-43.
  • Khinchin, A. (1935). Sul dominio di attrazione della legge di Gauss. Giorn. Istit. Ital. Attuari 6 371-393.
  • Khinchin, A. (1936). Su una legge dei grandi numeri generalizzata. Giorn. Istit. Ital. Attuari 7 365-377.
  • Klass, M. and Teicher, H. (1987). The central limit theorem for exchangeable random variables without moments. Ann. Probab. 15 138-153.
  • Kolmogorov, A. N. (1929). Sur la loi des grands nombres. Atti della Reale Accademia Nazionale dei Lincei, Serie VI, Rendiconti 9 470-474.
  • Kolmogorov, A. N. (1930). Sur la notion de la moy enne. Atti della Reale Accademia Nazionale dei Lincei, Serie VI, Rendiconti 12 388-391.
  • Kolmogorov, A. N. (1931). ¨Uber die analytischen Methoden in der Wahrscheinlichkeitsrechnung. Math. Ann. 104 415-458. Kolmogorov, A. N. (1932a). Sulla forma generale di un processo stocastico omogeneo. Un problema di Bruno de Finetti. Atti della Reale Accademia Nazionale dei Lincei, Serie VI, Rendiconti 15 805-808. Kolmogorov, A. N. (1932b). Ancora sulla forma generale di un processo omogeneo. Atti R. Acc. Lincei, Serie VI, Rendiconti 15 866-869. Kolmogorov, A. N. (1933a). Sulla determinazione empirica di una legge di distribuzione. Giorn. Istit. Ital. Attuari 4 92-99. Kolmogorov, A. N. (1933b). Grundbegriffe der Wahrscheinlichkeitsrechnung. Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Springer, Berlin. [English translation (1956) Foundations of the Theory of Probability, 2nd ed. Chelsea, New York.]
  • K ¨uchler, V. and Lauritzen, S. L. (1989). Exponential families extreme point models, and minimal space-time invariant functions for stochastic processes with stationary and independent increments. Scand. J. Statist. 15 237-261.
  • Lauritzen, S. L. (1975). General exponential models for discrete observations. Scand. J. Statist. 2 23-33.
  • Lauritzen, S. L. (1988). Extremal Families and Sy stems of Sufficient Statistics. Lecture Notes in Statist. 49. Springer, New York. L´evy, P. (1931a). Sulla legge forte dei grandi numeri. Giorn. Istit. Ital. Attuari 2 1-21. L´evy, P. (1931b). Sur quelques questions de calcul des probabilit´es. Prace Matematy ezno Fizy czne Warsaw 39 19-28.
  • L´evy, P. (1934). Sur les int´egrales dont les ´el´ements sont des variables al´eatoires ind´ependantes. Ann. Scuola Norm. Sup. Pisa 3 337-366; 4 217-235.
  • L´evy, P. (1935). Sull'applicazione della geometria dello spazio di Hilbert allo studio delle successioni di variabili casuali. Giorn. Istit. Ital. Attuari 6 13-28.
  • Lundberg, F. (1903). Approximerad framst¨allning av sannolikhetsfunktionen. Återf¨ors¨akring av kollektivrisker. Thesis, Uppsala.
  • Nagumo, M. (1930). ¨Uber eine Klasse von Mittelwenten. Japan J. Math. 7 71-79.
  • Ney man, J. (1935). Su un teorema concernente le cosiddette statistiche sufficienti. Giorn. Istit. Ital. Attuari 6 320-334.
  • Ottaviani, G. (1939). Sulla teoria astratta del calcolo delle probabilit a proposta dal Cantelli. Giorn. Istit. Ital. Attuari 10 10-40.
  • Paley, R. E., Wiener, N. and Zy gmund, A. (1933). Note on random functions. Math. Z. 37 647-668.
  • Petris, G. and Regazzini, E. (1994). About the characterization of mixtures of Markov chains. Unpublished manuscript.
  • Piccinato, L. (1986). De Finetti's logic of uncertainty and its impact on statistical thinking and practise. In Bayesian Inference and Decision Techniques (P. K. Goel and A. Zellner, eds.) 13-30. North-Holland, Amsterdam.
  • Ramakrishnan, S. and Sudderth, W. D. (1988). A sequence of coin toss variables for which the strong law fails. Amer. Math. Monthly 95 939-941.
  • Regazzini, E. (1985). Finitely additive conditional probabilities. Rend. Sem. Mat. Fis. Milano 55 69-89.
  • Regazzini, E. (1987). Argomenti di statistica. Parti 1-2. Dip. Matematica "F. Enriques," Univ. Milano.
  • Regazzini, E. and Petris, G. (1992). Some critical aspects of the use of exchangeability in statistics. Journal of the Italian Statistical Society 1 103-130.
  • Ressel, P. (1985). De Finetti-ty pe theorems: an analytic approach. Ann. Probab. 13 898-922.
  • Rigo, P. (1988). Un teorema di estensione per probabilit a condizionate finitamente additive. Atti della XXXIV Riunione Scientifica della Societ a Italiana di Statistica 2 27-34.
  • Romanowsky, V. (1925). On the moments of standard deviation and of correlation coefficient in samples from normal. Metron 5 3-46.
  • Romanowsky, V. (1928). On the criteria that two given samples belong to the same normal population. Metron 7 3-46.
  • Romanowsky, V. (1931). Sulle probabilit a a "posteriori." Giorn. Istit. Ital. Attuari 2 493-511.
  • Savage, L. J. (1954). The Foundations of Statistics. Wiley, New York.
  • Scarsini, M. and Verdicchio, L. (1993). On the extendibility of partially exchangeable random vectors. Statist. Probab. Lett. 16 43-46.
  • Schervish, M. J., Seidenfeld, T. and Kadane, J. B. (1984). The extent of non-conglomerability of finitely additive probabilities. Z. Wahrsch. Verw. Gebiete 66 205-226.
  • Seneta, E. (1992). On the history of the strong law of large numbers and Boole's inequality. Historia Mathematica 19 24-39.
  • Slutsky, E. (1934). Alcune applicazioni dei coefficienti di Fourier all'analisi delle funzioni aleatorie stazionarie. Giorn. Istit. Ital. Attuari 5 435-482.
  • Slutsky, E. (1937). Alcune proposizioni sulla teoria delle funzioni aleatorie. Giorn. Istit. Ital. Attuari 8 183-199.
  • Smith, A. F. M. (1981). On random sequences with centered spherical sy mmetry. J. Roy. Statist. Soc. Ser. B 43 208-209. Sobczy k, A. and Hammer, P. C. (1944a). A decomposition of additive set functions. Duke Math. J. 11 839-846. Sobczy k, A. and Hammer, P. C. (1944b). The ranges of additive set functions. Duke Math. J. 11 847-851.
  • Spizzichino, F. (1982). Extendibility of sy mmetric probability distributions and related bounds. In Exchangeability in Probability and Statistics (G. Koch and F. Spizzichino, eds.) 313-320. North-Holland, Amsterdam.
  • Spizzichino, F. (1988). Sy mmetry conditions on opinion assessment leading to time-transformed exponential models. In Accelerated Time Testing and Experts' Opinions (D. V. Lindley, C. A. Clarotti, eds.) 83-97. North-Holland, Amsterdam.
  • Stuart, A. and Ord, K. (1994). Kendall's Advanced Theory of Statistics 1. Distribution Theory. Edward Arnold, London.
  • Thatcher, A. R. (1970). A note on the early solutions of the problem of the duration of play. In Studies in the History of Statistics and Probability (E. S. Pearson and Sir M. Kendall, eds.) 1 127-130. Griffin, London.
  • von Plato, J. (1991). Finite partial exchangeability. Statist. Probab. Lett. 11 99-102.
  • Wald, A. (1944). On cumulative sums of random variables. Ann. Math. Statist. 15 283-296.
  • Wegman, E. J. (1986). Some personal recollections of Harald Cram´er on the development of statistics and probability. Statist. Sci. 1 528-535.
  • Wood, G. R. (1992). Binomial mixtures and finite exchangeability. Ann. Probab. 20 1167-1173.
  • Zabell, S. L. (1995). Characterizing Markov exchangeable sequences. J. Theoret. Probab. 8 175-178.
  • Zaman, A. (1984). Urn models for Markov exchangeability. Ann. Probab. 12 223-229.
  • Zaman, A. (1986). A finite form of de Finetti theorem for stationary Markov exchangeability. Ann. Probab. 14 1418-1427.
  • (1987). Atti del Convegno "Ricordo di Bruno de Finetti Professore nell'Ateneo triestino." Dip. Matematica applicata alle scienze economiche statistiche e attuariali. "Bruno de Finetti" Pub. No. 1.
  • Daboni, L. (1987). Bruno de Finetti. Boll. Un. Mat. Ital. A 283- 308.
  • Gani, J., ed. (1982). The Making of Statisticians. Springer, New York.
  • Goel, P. K. and Zellner, A., eds. (1986). Bayesian Inference and Decision Techniques. Essay s in Honor of Bruno de Finetti. North-Holland, Amsterdam.
  • Koch, G. and Spizzichino, F., eds. (1982). Exchangeability in Probability and Statistics. North-Holland, Amsterdam.
  • Kotz, S. and Johnson, N. L., eds. (1992). Breakthroughs in Statistics 1. Foundations and Basic Theory. Springer, New York.
  • Ky burg, H. E., Jr. and Smokler, H. E., eds. (1980). Studies in Subjective Probability. Krieger, Malabar, FL.
  • (1987). La Matematica Italiana tra le Due Guerre Mondiali. Milano, Gargnano del Garda, 8-11 ottobre 1986. Pitagora Ed., Bologna.
  • Lindley, D. V. (1989). De Finetti, Bruno. In Ency clopedia of Statistical Sciences (Supplement) 46-47. Wiley, New York.
  • Regazzini, E. (1987). Probability theory in Italy between the two world wars. A brief historical review. Metron 44 5-42.
  • von Plato, J. (1994). Creating Modern Probability. Cambridge Univ. Press.
  • VI, Rend. 12 367-373. (1930e). Sulla propriet a conglomerativa delle probabilit a subordinate. Atti Reale Accademia Nazionale dei Lincei, Serie VI, Rend. 12 278-282. (1930f). Introduzione matematica alla statistica metodologica. Riassunto di un corso di lezioni per laureati, Istituto Centrale di Statistica, Roma. (1930g). Funzione caratteristica di un fenomeno aleatorio. Atti Reale Accademia Nazionale dei Lincei, Mem. 4 86-133. (1930h). Le funzioni caratteristiche di legge istantanea. Atti Reale Accademia Nazionale dei Lincei, Serie VI, Rend. 12 278-282. (1930i). Calcolo della differenza media. Metron 8 89-94 (with U. Paciello). (1931a). Probabilismo. Saggio critico sulla teoria della probabilit a e sul valore della scienza. Logos Biblioteca di Filosofia 163-219. Perrella, Napoli. (1931b). Sul significato soggettivo della probabilit a. Fundamenta Mathematicae 17 298-329. (1931c). Le funzioni caratteristiche di legge istantanea dotate di valori eccezionali. Atti Reale Accademia Nazionale dei Lincei, Serie VI, Rend. 14 259-265. (1931d). Sui metodi proposti per il calcolo della differenza media. Metron 9 47-52. (1931e). Sul concetto di media. Giorn. Istit. Ital. Attuari 2 369- 396. (1931f). Calcoli sullo sviluppo futuro della popolazione italiana. Annuali di Statistica 10 3-130 (with C. Gini). (1931g). Le leggi differenziali e la rinunzia al determinismo. Rendiconti del Seminario Matematico dell'Universit´a di Roma 7 63-74. (1932a). Funzione caratteristica di un fenomeno aleatorio. In Atti del Congresso Internazionale dei Matematici 179-190. Zanichelli, Bologna.
  • (1943). La matematica nelle concezioni e nelle applicazioni statistiche. Statistica 3 89-112.
  • (1949). Sull'impostazione assiomatica del calcolo delle probabilit a. Aggiunta alla nota sull'assiomatica della probabilit a (Two articles). Annali Triestini 19 sez. II 29-81; 20 sez. II 3-20.
  • (1951). Recent suggestions for the reconciliation of theories of probability. Proc. Second Berkeley Sy mp. Math. Statist. Probab. 217-225. Univ. California Press, Berkeley.
  • (1952). Gli eventi equivalenti e il caso degenere. Giorn. Istit. Ital. Attuari 15 40-64. (1953a). Trasformazioni di numeri aleatori atte a far coincidere distribuzioni diverse. Giorn. Istit. Ital. Attuari 16 51-57. (1953b). Sulla nozione di "dispersione" per distribuzioni a pi u dimensioni. In Atti del IV Congresso UMI 587-596. Cremonese, Roma. (1955a). La struttura delle distribuzioni in un insieme astratto qualsiasi. Giorn. Istit. Ital. Attuari 18 12-28. [English translation in B. de Finetti, Probability, Induction and Statistics (1972) 129-140. Wiley, New York).] (1955b). Sulla teoria astratta della misura e dell'integrazione. Ann. Mat. Pura Appl. 40 307-319. [English translation in B. de Finetti, Probability, Induction and Statistics (1972) 115-128. Wiley, New York.]
  • (1959). La probabilit a e la statistica nei rapporti con l'induzione, secondo i diversi punti di vista. Atti corso CIME su Induzione e Statistica Varenna 1-115. Cremonese, Roma. [English translation in B. de Finetti, Probability, Induction and Statistics (1972) 147-227. Wiley, New York.]
  • (1969). Sulla proseguibilit a di processi aleatori scambiabili. Rend. Istit. Mat. Univ. Trieste 1 53-67.
  • (1976). La probabilit a: guardarsi dalle falsificazioni. Scientia 111 255-281. [English translation in Studies in Subjective Probability (1980) (H. E. Ky burg and H. E. Smokler, eds.) 193-224. Krieger, Malabar, FL.]
  • (1970). Teoria delle Probabilit a. Einaudi, Torino. Two volumes. [English translation, Theory of Probability (1975) Wiley, New York, two volumes.]
  • (1972). Probability, Induction and Statistics. Wiley, New York.
  • (1981). Scritti (1926-1930). Cedam, Padova.
  • (1991). Scritti (1931-1936). Pitagora Ed., Bologna.
  • (1993). Probabilit a e Induzione (Induction and Probability) (P. Monari and D. Cocchi, eds.). Clueb Ed., Bologna.
  • (1995). Filosofia della probabilit a (A. Mura, ed.). Theoria Il Saggiatore, Milano.