Statistical Science

Analyzing Musical Structure and Performance---A Statistical Approach

Jan Beran and Guerino Mazzola

Full-text: Open access

Abstract

Musical performance theory and the theory of musical structure in general is a rapidly developing field of musicology that has wide practical implications. Due to the complex nature of music, statistics is likely to play an important role. In spite of this, up to the present, applications of statistical methods to music have been rare and mostly limited to a formal confirmation of results obtained by other methods. The present paper introduces a statistical approach to the analysis of metric, melodic and harmonic structures of a score and their influence on musical performance. Examples by Schumann, Webern and Bach illustrate the proposed method of numerical encoding and hierarchical decomposition of score information. Application to performance data is exemplified by the analysis of tempo data for Schumann's “Träumerei” op. 15/7. The paper demonstrates why statistics should play a major active part in performance research. The results obtained here are only a starting point and should, hopefully, stimulate a fruitful discussion between statisticians, musicologists, computer scientists and other researchers interested in the area.

Article information

Source
Statist. Sci., Volume 14, Number 1 (1999), 47-79.

Dates
First available in Project Euclid: 24 December 2001

Permanent link to this document
https://projecteuclid.org/euclid.ss/1009211806

Digital Object Identifier
doi:10.1214/ss/1009211806

Zentralblatt MATH identifier
1059.62754

Keywords
Bandwidth cluster analysis hierarchial smoothing kernel smoothing musical analysis music musicology performance theory regression tempo

Citation

Beran, Jan; Mazzola, Guerino. Analyzing Musical Structure and Performance---A Statistical Approach. Statist. Sci. 14 (1999), no. 1, 47--79. doi:10.1214/ss/1009211806. https://projecteuclid.org/euclid.ss/1009211806


Export citation

References

  • [1] Basten, A. (1996). Personal e-mail communication to G. Mazzola, November 22, 1996.
  • [2] Beran, J. (1987). Aniseikonia. Bison Records.
  • [3] Beran, J. (1991). Cirri. Centaur Records.
  • [4] Beran, J. (1995). Maximum likelihood estimation of the differencing parameter for invertible short and longmemory ARIMA models. J. Roy. Statist. Soc. Ser. B 57 659-672.
  • [5] Beran, J. and Mazzola, G. (1992). Immaculate Concept. SToA 1002.92, Z ¨urich.
  • [6] Beran, J. and Mazzola, G. (1999). Visualizing the relationship between two time series by hierarchical smoothing models. J. Comput. Graph. Statist. To appear.
  • [7] Brockwell, P. J. and Davis, R. A. (1987). Time Series: Theory and Methods. Springer, New York.
  • [8] Chatterjee, S. and Price, B. (1995). Regression Analysis by Example, 2nd ed. Wiley, New York.
  • [9] de la Motte-Haber, H. (1996). Handbuch der Musikpsychologie, 2nd ed. Laaber-Verlag, Laaber.
  • [10] Friberg, A. (1995). A Quantitative Rule System for Musical Performance. KTH, Stockholm.
  • [11] Gabrielson, A. (1995). Expressive intention and performance. In Music and the Mind Machine (R. Steinberg, ed.). Springer, Berlin.
  • [12] Geweke, J. (1981). A comparison of tests of independence of two covariance-stationary time series. J. Amer. Statist. Assoc. 76 363-373.
  • [13] Haugh, L. D. (1976). Checking for independence of two covariance stationary time series: a univariate residual cross correlation approach. J. Amer. Statist. Assoc. 71 378-385.
  • [14] Hong, Y. (1996). Testing for independence between two covariance stationary time series. Biometrika 83 615-626.
  • [15] Jackendoff, R. and Lerdahl, F. (1983). A Generative Theory of Tonal Music. MIT Press.
  • [16] Kopiez, R. (1996). Aspekte der Performanceforschung. In Handbuch der Musikpsychologie (H. de la Motte, ed.) Laaber-Verlag, Laaber.
  • [17] Kopiez, R. and Langer, J. (1995). Entwurf einer neuen Methode der Performanceanalyse auf Grundlage einer Theorie oszillierender Systeme. In Jahrbuch der Deutschen Gesellschaft f ¨ur Musikpsychologie (K.-E. Behne and H. de la Motte, eds.) 12. Deutsche Gessellschaft f ¨ur Musikpsychologie, Wilhelmshaven.
  • [18] Kouzes, R. T., Myers, J. D. and Wulf, W. A. (1996). Collaboratories: doing science on the Internet. Computer August 1996.
  • [19] Mazzola, G. (1989-1994). presto. SToA Music, Z ¨urich.
  • [20] Mazzola, G. (1990). Synthesis. SToA 1001.90, Z ¨urich.
  • [21] Mazzola, G. (1990). Geometrie der T¨one. Birkh¨auser, Basel.
  • [22] Mazzola, G. (1995). Inverse performance theory. In Proceedings of the ICMC 95. ICMA, Banff.
  • [23] Mazzola, G. and Zahorka, O. (1994). Tempo curves revisited: hierarchies of performance fields. Computer Music Journal 18.
  • [24] Mazzola, G. and Zahorka, O. (1994). The RUBATO Performance Workstation on NeXTSTEP. In Proceedings of the ICMC 1994. ICMA, Aarhus.
  • [25] Mazzola, G. and Zahorka, O. (1993-1995). Geometry and logic of musical performance I, II, III. SNSF Research Reports, Univ. Z ¨urich.
  • [26] Mazzola, G. and Zahorka, O. (1996). Topologien gestalteter Motive in Kompositionen. In Festschrift zum 65. Geburtstag J. P. Fricke. W. Auhagen, K¨oln. To appear
  • [27] Mazzola, G. and Zahorka, O. (1996). RUBATO on the Internet. http://www.ifi.unizh.ch/groups/mml/musicmedia, Univ. Z ¨urich.
  • [28] Mazzola, G., Zahorka, O. and Stange-Elbe, J. (1995). Analysis and Performance of a Dream. In Proceedings of the 1995 Symposium on Musical Performanc (J. Sundberg, ed.) KTH, Stockholm.
  • [29] Noll, T. (1995). Morphologische Grundlagen der abendl¨andischen Harmonik. Doctoral dissertation, TU Berlin.
  • [30] Priestley, M. B. (1981). Spectral Analysis of Time Series. Academic Press, New York.
  • [31] Repp, B. (1992). Diversity and communality in music performance: an analysis of timing microstructure in Schumann's "Tr¨aumerei." Journal of the Acoustic Society of America 92.
  • [32] Repp, B. (1995). e-mail communication of tempo data. Haskins Laboratories, New Haven, June 2, 1995.
  • [33] R´eti, R. (1978). The Thematic Process in Music, 2nd ed. Westport, Greenwood Press.
  • [34] Riemann, H. (1893). Vereinfachte Harmonielehre oder die Lehre von den tonalen Funktionen der Akkorde. London.
  • [35] S-Plus. (1995). MathSoft Inc., Seattle, WA.
  • [36] Steinberg, R. ed. (1995). Music and the Mind Machine. Springer, New York.
  • [37] Sundberg, J., ed. (1994). Generative Grammars for Music Performance. KTH, Stockholm.
  • [38] Sundberg, J. and Verillo, V. (1980). On the anatomy of the retard: A study of timing in music. Journal of the Acoustic Society of America 68 772-779.
  • [39] Todd, N. P. McA. (1985). A model of expressive timing in tonal music. Music Perception 3 33-58.
  • [40] Todd, N. P. McA. (1989). Towards a cognitive theory of expression: the performance and perception of Rubato. Contemporary Music Review 4.
  • [41] Todd, N. P. McA. (1992). The dynamics of dynamics: A model of musical expression. Journal of the Acoustic Society America 91 3540-3550.
  • [42] Waugh, W. A. O'N. (1996). Music, probability, and statistics. In Encyclopedia of Statistical Sciences 6 134-137.
  • [43] Webern, A. (1980). Variationen op.27 mit Interpretationsanweisungen. UE 16845, Wien.
  • [44] Yaglom, A. M. and Yaglom, I. M. (1967). Wahrscheinlichkeit und Information. Deutscher Verlag der Wissenschaften, Berlin.
  • [45] Zahorka, O. (1995). PrediBase-controlling semantics of symbolic structures in music. In Proceedings of the ICMC 95. ICMA, Banff.
  • [46] Zahorka, O. (1998). From sign to sound-analysis and performance of musical scores on RUBATO. In Proceedings of Klangart 95 (B. Enders, ed.) Schott, Mainz.