Statistics and Probability African Society Editions

Chapter 3. Le théorème inverse de Galois

Hamet SEYDI

Full-text: Open access

Abstract

The main aim of this article is to prove the following result.

Theorem 3. Let $K$ be a hilbertian field and $G$ a finite group. Then there exist a Galois extension $L$ of $K$ such that $Gal(L/K)$ is isomorphic to $G$.

Chapter information

Source
Hamet Seydi, Gane Samb Lo, Aboubakary Diakhaby, eds., A Collection of Papers in Mathematics and Related Sciences, a Festschrift in Honour of the Late Galaye Dia, (Calgary, Alberta, 2018), 21-31

Dates
First available in Project Euclid: 26 September 2019

Permanent link to this document
https://projecteuclid.org/euclid.spaseds/1569509463

Digital Object Identifier
doi:10.16929/sbs/2018.100-01-03

Subjects
Primary: 11F80: Galois representations 11R32: Galois theory

Keywords
Galois Inverse Theorem Galois representations

Citation

SEYDI, Hamet. Chapter 3. Le théorème inverse de Galois. A Collection of Papers in Mathematics and Related Sciences, 21--31, Statistics and Probability African Society, Calgary, Alberta, 2018. doi:10.16929/sbs/2018.100-01-03. https://projecteuclid.org/euclid.spaseds/1569509463


Export citation