Rocky Mountain Journal of Mathematics

Lagrange's theorem for Hom-Groups

Mohammad Hassanzadeh

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Hom-groups are nonassociative generalizations of groups where the unitality and associativity are twisted by a map. We show that a Hom-group $(G, \alpha )$ is a pointed idempotent quasigroup (pique). We use Cayley tables of quasigroups to introduce some examples of Hom-groups. Introducing the notions of Hom-subgroups and cosets we prove Lagrange's theorem for finite Hom-groups. This states that the order of any Hom-subgroup $H$ of a finite Hom-group $G$ divides the order of $G$. We linearize Hom-groups to obtain a class of nonassociative Hopf algebras called Hom-Hopf algebras. As an application of our results, we show that the dimension of a Hom-sub-Hopf algebra of the finite dimensional Hom-group Hopf algebra $\mathbb {K}G$ divides the order of $G$. The new tools introduced in this paper could potentially have applications in theories of quasigroups, nonassociative Hopf algebras, Hom-type objects, combinatorics, and cryptography.

Article information

Source
Rocky Mountain J. Math., Volume 49, Number 3 (2019), 773-787.

Dates
First available in Project Euclid: 23 July 2019

Permanent link to this document
https://projecteuclid.org/euclid.rmjm/1563847233

Digital Object Identifier
doi:10.1216/RMJ-2019-49-3-773

Mathematical Reviews number (MathSciNet)
MR3983300

Zentralblatt MATH identifier
07088336

Citation

Hassanzadeh, Mohammad. Lagrange's theorem for Hom-Groups. Rocky Mountain J. Math. 49 (2019), no. 3, 773--787. doi:10.1216/RMJ-2019-49-3-773. https://projecteuclid.org/euclid.rmjm/1563847233


Export citation

References

  • N. Aizawa and H. Sato, q-deformation of the Virasoro algebra with central extension, Phys. Lett. B, 256 (1991), 185–190.
  • D. Bryant, M. Buchanan, and I.M. Wanless, The spectrum for quasigroups with cyclic automorphisms and additional symmetries, Discrete Mathematics, 309 (2009), no. 4, 821–833.
  • R.H. Bruck, A survey of binary systems, 3rd ed., Springer (1971).
  • B. Baumeister and A. Stein, The finite Bruck loops, J. Algebra, 330 (2011), 206–220.
  • S. Caenepeel, and I. Goyvaerts, Monoidal Hom-Hopf algebras, Comm. Algebra 39 (2011), no. 6, 2216–2240.
  • M. Chaichian, P. Kulish, and J. Lukierski, q-deformed Jacobi identity, q-oscillators and q-deformed infinite-dimensional algebras, Phys. Lett. B, 237 (1990), 401–406.
  • O. Chein, M.K. Kinyon, A. Rajah, and P. Vojtěchovský, Loops and the Lagrange property, Results. Math. 43 (2003), 74–78.
  • O. Chein, H. Pflugfelder, and J.D.H. Smith, Quasigroups and loops: theory and applications, Heldermann, Berlin (1990).
  • T.L. Curtright and C.K. Zachos, Deforming maps for quantum algebras, Phys. Lett. B, 243 (1990), 237–244.
  • Y. Chen, Z. Wang, and L. Zhang, Integrals for monoidal Hom-Hopf algebras and their applications, J. Math. Phys. 54 (2013), 073515.
  • J. Dénes and A. Keedwell, Latin squares and their applications, Academic Press, (1974).
  • T. Foguel, M.K. Kinyon, and J.D. Phillips, On twisted subgroups and Bol loops of odd order, Rocky Mountain J. Math. 36 (2006), no. 1, 183–212.
  • G. Graziani, A. Makhlouf, C. Menini, and F. Panaite, BiHom-associative algebras, BiHom-Lie algebras and BiHom-bialgebras, SIGMA, 11 (2015), 086, 34 pages.
  • A.N. Grishkov and A.V. Zavarnitsine, Lagrange's theorem for Moufang loops, Math. Proc. Cambridge Philos. Soc. 139 (2005), 41–57.
  • M. Hassanzadeh, Hom-groups, Representations and homological algebra, arXiv 1801.07398. To appear in Colloq. Math.
  • M. Hassanzadeh, On antipodes of Hom-Hopf algebras (2018), arXiv 1803.01441.
  • J.T. Hartwig, D. Larsson, and S.D. Silvestrov, Deformations of Lie algebras using $\sigma$-derivations, J. Algebra 295 (2006), no. 2, 314–361.
  • M. Hassanzadeh, I. Shapiro and S. Sütlü, Cyclic homology for Hom-associative algebras, J. Geom. and Phys., 98, December (2015), 40–56.
  • C. Laurent-Gengoux, A. Makhlouf, and J. Teles, Universal algebra of a Hom-Lie algebra and group-like elements, J. Pure Appl. Algebra, 222 (2018), no. 5, 1139–1163.
  • A. Makhlouf and S.D. Silvestrov, Hom-algebra structures, J. Gen. Lie Theory Appl. 2 (2008), no. 2, 51–64.
  • A. Makhlouf and S. Silvestrov, Hom-Lie admissible Hom-coalgebras and Hom-Hopf algebras, pp. 189–206 in Generalized Lie theory in mathematics, physics and beyond, Springer, Berlin (2009)
  • A. Makhlouf and S. Silvestrov, Hom-algebras and Hom-coalgebras, J. Algebra Appl. 9 (2010), no. 4, 553–589.
  • F. Panaite, P. Schrader, and M.D. Staic, Hom-Tensor categories and the Hom-Yang-Baxter equation, Appl. Categ. Structures, 27 (2019), p 323–363.
  • B. Schneier, Applied cryptography, Wiley, New York (1996).
  • J.D.H. Smith, An introduction to quasigroups and their representations, chapman and Hall/CRC Press (2007).
  • T. Suksumran and K. Wiboonton, Lagrange's theorem for gyrogroups and the Cauchy property, Quasigroups Rel. Syst. 22 (2014), 283–294.
  • D. Yau, Hom-bialgebras and comodule Hom-algebras, Int. Electron. J. Algebra 8 (2010), 45–64.
  • D. Yau, Hom-quantum groups: I. Quasi-triangular Hom-bialgebras, J. Phys. 45 (2012) no. 6.
  • D. Yau, Enveloping algebras of Hom-Lie algebras, J. Gen. Lie Theory Appl., 2, (2008), 95–108.
  • X. Zhao, and X. Zhang, Lazy 2-cocycles over monoidal Hom-Hopf algebras, Colloq. Math. 142 (2016), no. 1, 61–81.