Rocky Mountain Journal of Mathematics

Influence of mean curvature on Mountain-pass solutions for Hardy-Sobolev equations

Hassan Jaber

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Let $\Omega $ be a smooth open domain in $\mathbb{R} ^n$, $n \geq 3$, with $0 \in \partial \Omega $ and $s \in {]}0,2{[}$. Let $2^\star(s) := {2(n-s)}/({n-2})$ be the critical Hardy-Sobolev exponent. Consider the Dirichlet problem that corresponds to the critical and perturbative Hardy-Sobolev equation \begin{aligned}\begin{cases}-\Delta u = {u^{2^\star(s) -1}}/{|x|^s} + h u^{q-1} \quad &\mbox {in } \Omega ,\\u \equiv 0 &\mbox {on } \partial \Omega, \end{cases}\end{aligned} where $q \in {]} 2,2^\star {[}$ with $2^\star := 2^\star (0)$ and $h \in C^0(\overline {\Omega })$, $h \geq 0$, almost everywhere on $\Omega $. In this article, we investigate the influence of perturbation and mean curvature at a boundary singularity on the existence of a positive Mountain pass solution to the above equation.

Article information

Source
Rocky Mountain J. Math., Volume 49, Number 2 (2019), 505-519.

Dates
Received: 2 August 2018
First available in Project Euclid: 23 June 2019

Permanent link to this document
https://projecteuclid.org/euclid.rmjm/1561318390

Digital Object Identifier
doi:10.1216/RMJ-2019-49-2-505

Mathematical Reviews number (MathSciNet)
MR3973237

Zentralblatt MATH identifier
07079981

Subjects
Primary: 35J60: Nonlinear elliptic equations 58J05: Elliptic equations on manifolds, general theory [See also 35-XX]

Keywords
mean curvature Mountain-pass solutions Hardy-Sobolev equations

Citation

Jaber, Hassan. Influence of mean curvature on Mountain-pass solutions for Hardy-Sobolev equations. Rocky Mountain J. Math. 49 (2019), no. 2, 505--519. doi:10.1216/RMJ-2019-49-2-505. https://projecteuclid.org/euclid.rmjm/1561318390


Export citation

References

  • A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1974), 349–381.
  • T. Aubin, Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pures Appl. 55 (1976), 269–296.
  • H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437–477.
  • L. Caffarelli, R.V. Kohn and L. Nirenberg, First order interpolation inequalities with weights, Compos. Math. 53 (1984), 259–275.
  • F. Catrina and Z.-Q.Wang, On the Caffarelli-Kohn-Nirenberg inequalities: Sharp constants, existence $($and nonexistence$)$, and symmetry of extremal functions, Comm. Pure Appl. Math. 54 (2001), 229–258.
  • C.C. Chen and C.-S. Lin, Local behavior of singular positive solutions of semi linear elliptic equations with Sobolev exponent, Duke Math J. 78 (1995), 315–334.
  • J.-L. Chern and C.-S. Lin, Minimizers of Caffarelli-Kohn-Nirenberg inequalities with the singularity on the boundary, Arch. Rat. Mech. Anal. 197 (2010), 401–432.
  • O. Druet, The best constants problem in Sobolev inequalities, Math. Ann. 314 (1999), 327–346.
  • ––––, Elliptic equations with critical Sobolev exponents in dimension $3$, Ann. Inst. Poincare 19 (2002), 125–142.
  • P. Esposito and F. Robert, Mountain pass critical points for Paneitz-Branson operators, Calc. Var. 15 (2002), 493–517.
  • N. Ghoussoub and X.S. Kang, Hardy-Sobolev critical elliptic equations with boundary singularities, AIHP-Anal. 21 (2004), 767–793.
  • N. Ghoussoub and A. Moradifam, Functional inequalities: New perspectives and new applications, Math. Surv. Mono. 187 (2013).
  • N. Ghoussoub and F. Robert, Concentration estimates for Emden-Fowler equations with boundary singularities and critical growth, Inter. Math. Res. Papers 2006 (2006), 1–85.
  • ––––, Hardy-singular boundary mass and Sobolev critical variational problems, Anal. PDE 10 (2017), 1017–1079.
  • N. Ghoussoub and C. Yuan, Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents, Trans. Amer. Math. Soc. 352 (2000), 5703–5743.
  • G. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order, Grundl. Math. Wissen. 224 (1983).
  • A. Gmira and L. Véron, Boundary singularities of solutions of some nonlinear elliptic equations, Duke Math. J. 64 (1991), 271–324.
  • E. Hebey, Sharp Sobolev inequalities of second order, J. Geom. Anal. 13 (2003), 145–162.
  • H. Jaber, Hardy-Sobolev equations on compact Riemannian manifolds, Nonlin. Anal. 103 (2014), 39–54.
  • ––––, Optimal Hardy-Sobolev inequalities on compact Riemannian manifolds, J. Math. Anal. Appl. 421 (2015), 1869–1888.
  • ––––, Mountain pass solutions for perturbed Hardy-Sobolev equations on compact manifolds, Analysis 36 (2016), 287–296.
  • D. Kang and S. Peng, Existence of solutions for elliptic equations with critical Sobolev-Hardy exponents, Nonlin. Anal. 56 (2004), 1151–1164.
  • Y. Li, B. Ruf, Q. Guo and P. Niu, Quasilinear elliptic problems with combined critical Sobolev-Hardy terms, Ann. Mat. Pura Appl. 192 (2013), 93–113.
  • E.H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. Math. 118 (1983).
  • R. Musina, Existence of extremals for the Maz'ya and for the Caffarelli-Kohn-Nirenberg inequalities, Nonlin. Anal. 70 (2009), 3002–3007.