Rocky Mountain Journal of Mathematics

On Chow groups of some hyperkahler fourfolds with a non-symplectic involution, II

Robert Laterveer

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


This note is about hyperkahler fourfolds $X$ admitting a non-symplectic involution $\iota $. The Bloch-Beilinson conjectures predict the way $\iota $ should act on certain pieces of the Chow groups of $X$. The main result of this note is a verification of this prediction for Fano varieties of lines on certain cubic fourfolds. This has some interesting consequences for the Chow ring of the quotient $X/\iota $.

Article information

Rocky Mountain J. Math., Volume 48, Number 6 (2018), 1925-1950.

First available in Project Euclid: 24 November 2018

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 14C15: (Equivariant) Chow groups and rings; motives 14C25: Algebraic cycles 14C30: Transcendental methods, Hodge theory [See also 14D07, 32G20, 32J25, 32S35], Hodge conjecture

Algebraic cycles Chow groups motives Bloch's conjecture Bloch-Beilinson filtration hyperkahler varieties non-symplectic involution multiplicative Chow-Künneth decomposition splitting property Calabi-Yau varieties


Laterveer, Robert. On Chow groups of some hyperkahler fourfolds with a non-symplectic involution, II. Rocky Mountain J. Math. 48 (2018), no. 6, 1925--1950. doi:10.1216/RMJ-2018-48-6-1925.

Export citation


  • A. Beauville, Some remarks on Kähler manifolds with $c_1=0$, in: Classification of algebraic and analytic manifolds, Birkhäuser, Boston, 1983.
  • ––––, Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differ. Geom. 18 (1983), 755–782.
  • ––––, On the splitting of the Bloch-Beilinson filtration, in: Algebraic cycles and motives, J. Nagel and C. Peters, eds., Cambridge University Press, Cambridge, 2007.
  • A. Beauville and R. Donagi, La variété des droites d'une hypersurface cubique de dimension $4$, C.R. Acad. Sci. Paris 301 (1985), 703–706.
  • C. Camere, Symplectic involutions of holomorphic symplectic fourfolds, Bull. Lond. Math. Soc. 44 (2012), 687–702.
  • C. Delorme, Espaces projectifs anisotropes, Bull. Soc. Math. France 103 (1975), 203–223.
  • L. Fu, Decomposition of small diagonals and Chow rings of hypersurfaces and Calabi-Yau complete intersections, Adv. Math. 244 (2013), 894–924.
  • ––––, On the action of symplectic automorphisms on the $CH_0$-groups of some hyper-Kähler fourfolds, Math. Z. 280 (2015), 307–334.
  • ––––, Classification of polarized symplectic automorphisms of Fano varieties of cubic fourfolds, Glasgow Math. J. 58 (2016), 17–37.
  • L. Fu, R. Laterveer and C. Vial, The generalized Franchetta conjecture for some hyper–Kähler varieties, arXiv:1708.02919.
  • L. Fu, Z. Tian and C. Vial, Motivic hyperkähler resolution conjecture for generalized Kummer varieties, arXiv:1608.04968.
  • W. Fulton, Intersection theory, Springer-Verlag, Berlin, 1984.
  • U. Jannsen, Motivic sheaves and filtrations on Chow groups, in Motives, U. Jannsen, et al., eds., Proc. Symp. Pure Math. 55 (1994).
  • R. Laterveer, Algebraic cycles on a very special EPW sextic, Rend. Sem. Mat. Univ. Padova, to appear.
  • ––––, About Chow groups of certain hyperkähler varieties with non-symplectic automorphisms, Vietnam J. Math. 46 (2018), 453–470.
  • ––––, On the Chow groups of some hyperkähler fourfolds with a non-symplectic involution, Inter. J. Math. 28 (2017), 1–18.
  • ––––, On the Chow groups of certain EPW sextics, submitted.
  • J. Murre, On a conjectural filtration on the Chow groups of an algebraic variety, Parts I and II, Indag. Math. 4 (1993), 177–201.
  • J. Murre, J. Nagel and C. Peters, Lectures on the theory of pure motives, Amer. Math. Soc. Univ. Lect. Ser. 61, Providence, 2013.
  • K. Paranjape, Cohomological and cycle-theoretic connectivity, Ann. Math. 139 (1994), 641–660.
  • T. Scholl, Classical motives, in Motives, U. Jannsen, et al., eds., Proc. Symp. Pure Math. 55 (1994).
  • M. Shen and C. Vial, The Fourier transform for certain hyperKähler fourfolds, Mem. Amer. Math. Soc. 240 (2016).
  • ––––, The motive of the Hilbert cube $X^{[3]}$, Forum Math. Sigma 4 (2016).
  • C. Vial, Remarks on motives of abelian type, Tohoku Math. J. 69 (2017), 195–220.
  • ––––, On the motive of some hyperkähler varieties, J. reine angew. Math. 725 (2017), 235–247.
  • C. Voisin, Théorie de Hodge et géométrie algébrique complexe, Cours Spec. Soc. Math. France, Paris, 2002.
  • ––––, Chow rings and decomposition theorems for $K3$ surfaces and Calabi-Yau hypersurfaces, Geom. Topol. 16 (2012), 433–473.
  • ––––, The generalized Hodge and Bloch conjectures are equivalent for general complete intersections, Ann. Sci. Ecole Norm. Sup. 46 (2013), 449–475.
  • ––––, Bloch's conjecture for Catanese and Barlow surfaces, J. Differ. Geom. 97 (2014), 149–175.
  • ––––, Chow rings, Decomposition of the diagonal, and the topology of families, Princeton University Press, Princeton, 2014.
  • ––––, The generalized Hodge and Bloch conjectures are equivalent for general complete intersections, II, J. Math. Sci. Univ. Tokyo 22 (2015), 491–517.