Rocky Mountain Journal of Mathematics
- Rocky Mountain J. Math.
- Volume 47, Number 6 (2017), 1839-1873.
Semi-cosimplicial objects and spreadability
D. Gwion Evans, Rolf Gohm, and Claus Köstler
Abstract
To a semi-cosimplicial object (SCO) in a category, we associate a system of partial shifts on the inductive limit. We show how to produce an SCO from an action of the infinite braid monoid $\mathbb{B} ^+_\infty $ and provide examples. In categories of (noncommutative) probability spaces, SCOs correspond to spreadable sequences of random variables; hence, SCOs can be considered as the algebraic structure underlying spreadability.
Article information
Source
Rocky Mountain J. Math., Volume 47, Number 6 (2017), 1839-1873.
Dates
First available in Project Euclid: 21 November 2017
Permanent link to this document
https://projecteuclid.org/euclid.rmjm/1511254955
Digital Object Identifier
doi:10.1216/RMJ-2017-47-6-1839
Mathematical Reviews number (MathSciNet)
MR3725247
Zentralblatt MATH identifier
06816573
Subjects
Primary: 18G30: Simplicial sets, simplicial objects (in a category) [See also 55U10] 20F36: Braid groups; Artin groups 46L53: Noncommutative probability and statistics
Keywords
Semi-cosimplicial object coface operator partial shift braid monoid cohomology noncommutative probability space spreadability subfactor
Citation
Evans, D. Gwion; Gohm, Rolf; Köstler, Claus. Semi-cosimplicial objects and spreadability. Rocky Mountain J. Math. 47 (2017), no. 6, 1839--1873. doi:10.1216/RMJ-2017-47-6-1839. https://projecteuclid.org/euclid.rmjm/1511254955