Rocky Mountain Journal of Mathematics

Signed permutations and the braid group

Michael P. Allocca, Steven T. Dougherty, and Jennifer F. Vasquez

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We make a connection between the braid group and signed permutations. Using this link, we describe a commutative diagram which contains the fundamental sequence for the braid group.

Article information

Source
Rocky Mountain J. Math., Volume 47, Number 2 (2017), 391-402.

Dates
First available in Project Euclid: 18 April 2017

Permanent link to this document
https://projecteuclid.org/euclid.rmjm/1492502541

Digital Object Identifier
doi:10.1216/RMJ-2017-47-2-391

Mathematical Reviews number (MathSciNet)
MR3635365

Zentralblatt MATH identifier
06715752

Subjects
Primary: 20B30: Symmetric groups 20F36: Braid groups; Artin groups

Keywords
Braid group signed permutation symmetric group

Citation

Allocca, Michael P.; Dougherty, Steven T.; Vasquez, Jennifer F. Signed permutations and the braid group. Rocky Mountain J. Math. 47 (2017), no. 2, 391--402. doi:10.1216/RMJ-2017-47-2-391. https://projecteuclid.org/euclid.rmjm/1492502541


Export citation

References

  • E. Artin, Theory of braids, Ann. Math. 48 (1947), 101–126.
  • V.G. Bardakov, The virtual and universal braids, Fund. Math. 181 (2004), 1–18.
  • J. Birman, Braids, links, and mapping class groups, Ann. Math. Stud. 82, Princeton University Press, Princeton, 1975.
  • A. Bjorner and F. Brenti, Combinatorics of Coxeter groups, Grad. Texts Math. 231, Springer, New York, 2005.
  • A.V. Borovik and A. Borovik, Mirrors and reflections, Springer, New York, 2010.
  • S.T. Dougherty and J. Franko Vasquez, Amidakuji and games, J. Rec. Math. 37 (2008), 46–56.
  • R.P. Feynman and S. Weinberg, Elementary particles and the laws of physics: The 1986 Dirac memorial lectures, Cambridge University Press, Cambridge, 1987.
  • V.L. Hansen, The story of a shopping bag, Math. Intelligencer 19 (1997), 50–52.
  • J.E. Humphreys, Reflection groups and Coxeter groups, Cambr. Stud. Adv. Math. 29, Cambridge University Press, Cambridge, 1990.
  • C. Kassel and V. Turaev, Braid groups, Grad. Texts Math. 247, Springer, New York, 2008.
  • L.H. Kauffman, On knots, Ann. Math. Stud. 115, Princeton University Press, Princeton, 1987.
  • L. Lange and J.W. Miller, A random ladder game: Permutations, eigenvalues, and convergence of Markov chains, Math. Mag. 23 (1992), 373–385.
  • V. Manturov, Knot theory, Chapman & Hall/CRC, Boca Raton, FL, 2004.