Rocky Mountain Journal of Mathematics

Symbol calculus of square-integrable operator-valued maps

Ingrid Beltiţă, Daniel Beltiţă, and Marius Măntoiu

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We develop an abstract framework for the investigation of quantization and dequantization procedures based on orthogonality relations that do not necessarily involve group representations. To illustrate the usefulness of our abstract method, we show that it behaves well with respect to infinite tensor products. This construction subsumes examples from the study of magnetic Weyl calculus, magnetic pseudo-differential Weyl calculus, metaplectic representation on locally compact abelian groups, irreducible representations associated with finite-dimensional coadjoint orbits of some special infinite-dimensional Lie groups, and square-integrability properties shared by arbitrary irreducible representations of nilpotent Lie groups.

Article information

Rocky Mountain J. Math., Volume 46, Number 6 (2016), 1795-1851.

First available in Project Euclid: 4 January 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 46L65: Quantizations, deformations
Secondary: 22E66: Analysis on and representations of infinite-dimensional Lie groups 35S05: Pseudodifferential operators 46H30: Functional calculus in topological algebras [See also 47A60] 46K15: Hilbert algebras

Symbol calculus Hilbert algebra Berezin-Toeplitz operator square-integrable representation


Beltiţă, Ingrid; Beltiţă, Daniel; Măntoiu, Marius. Symbol calculus of square-integrable operator-valued maps. Rocky Mountain J. Math. 46 (2016), no. 6, 1795--1851. doi:10.1216/RMJ-2016-46-6-1795.

Export citation


  • J. Arazy and H. Upmeier, A one-parameter calculus for symmetric domains, Math. Nachr. 280 (2007), 939–961.
  • G. Arsu, On Schatten-von Neumann class properties of pseudodifferential operators, The Cordes-Kato method, J. Oper. Th. 59 (2008), 81–114.
  • I. Beltiţă and D. Beltiţă, Magnetic pseudo-differential Weyl calculus on nilpotent Lie groups, Ann. Global Anal. Geom. 36 (2009), 293–322.
  • I. Beltiţă and D. Beltiţă, Continuity of magnetic Weyl calculus, J. Funct. Anal. 260 (2011), 1944–1968.
  • ––––, Modulation spaces of symbols for representations of nilpotent Lie groups, J. Fourier Anal. Appl. 17 (2011), 290–319.
  • J. Dixmier, Les algèbres d'opérateurs dans l'espace hilbertien, Gauthier-Villars, Paris, 1969.
  • M. Engli\u s, Toeplitz operators and group representations, J. Fourier Anal. Appl. 13 (2007), 243–265.
  • G.B. Folland, Harmonic analysis in phase space, Princeton University Press, Princeton, NJ, 1989.
  • I.M. Gelfand and N.Ya. Vilenkin, Generalized functions, in Applications of harmonic analysis, Volume 4, Academic Press, New York, 1964.
  • I.C. Gohberg and M.G. Krein, Introduction to the theory of linear nonselfadjoint operators, Trans. Math. Mono., 18 American Mathematical Society, Providence, 1969.
  • K. Gröchenig and T. Strohmer, Pseudodifferential operators on locally compact abelian groups and Sjöstrand's symbol class, J. reine angew. Math. 613 (2007), 121–146.
  • H. Grundling, A group algebra for inductive limit groups, Continuity problems of the canonical commutation relations, Acta Appl. Math. 46 (1997), 107–145.
  • H. Grundling and K.-H. Neeb, Full regularity for a $C^*$-algebra of the canonical commutation relations, Rev. Math. Phys. 21 (2009), 587–613.
  • ––––, Infinite tensor products of $C_0({\mathbb R})$: Towards a group algebra for ${\mathbb R}^\infty$, J. Oper. Th., to appear.
  • A. Guichardet, Symmetric Hilbert spaces and related topics, Lect. Notes Math. 261, Springer-Verlag, Berlin, 1972.
  • P.R. Halmos, Measure theory, D. Van Nostrand Company, Inc., New York, 1950.
  • S. Haran, Quantizations and symbolic calculus over the $p$-adic numbers, Ann. Inst. Fourier 43 (1993), 997–1053.
  • G.C. Hegerfeldt, Kernel integral formulas for the canonical commutation relations of quantum fields, I, Representations with cyclic field, J. Math. Phys. 10 (1969), 1681–1698.
  • ––––, Kernel integral formulas for the canonical commutation relations of quantum fields, II, Irreducible representations, J. Math. Phys. 11 (1970), 21–29.
  • R.E. Howe and C.C. Moore, Asymptotic properties of unitary representations, J. Funct. Anal. 32 (1979), 72–96.
  • V. Iftimie, M. Măntoiu and R. Purice, Magnetic pseudodifferential operators, Publ. Res. Inst. Math. Sci. 43 (2007), 585–623.
  • H. Jarchow, Locally convex spaces, B.G. Teubner, Stuttgart, 1981.
  • M.V. Karasev and T.A. Osborn, Symplectic areas, quantization, and dynamics in electromagnetic fields, J. Math. Phys. 43 (2002), 756–788.
  • J.R. Klauder and J. McKenna, Continuous-representation theory, V, Construction of a class of scalar boson field continuous representations, J. Math. Phys. 6 (1965), 68–87.
  • G.W. Mackey, Some remarks on symplectic automorphisms, Proc. Amer. Math. Soc. 16 (1965), 393–397.
  • M. Măntoiu and D. Parra, Compactness criteria in Banach spaces in the setting of continuous frames, Banach J. Math. Anal. 8 (2014), 30–48.
  • M. Măntoiu and R. Purice, The magnetic Weyl calculus, J. Math. Phys. 45 (2004), 1394–1417.
  • ––––, The modulation mapping for magnetic symbols and operators, Proc. Amer. Math. Soc. 138 (2010), 2839–2852.
  • ––––, Abstract composition laws and their modulation spaces, J. Pseudo-Differ. Oper. Appl. 3 (2012), 283–307.
  • ––––, On Frechet-Hilbert algebras. Arch. Math. 103 (2014), 157–166.
  • M. Măntoiu, R. Purice and S. Richard, Spectral and propagation results for magnetic Schrödinger operators; A $C^*$-algebraic framework, J. Funct. Anal. 250 (2007), 42–67.
  • K.-H. Neeb, Holomorphy and convexity in Lie theory, Gruyter Expos. Math. 28, Walter de Gruyter & Co., Berlin, 2000.
  • N.V. Pedersen, Matrix coefficients and a Weyl correspondence for nilpotent Lie groups, Invent. Math. 118 (1994), 1–36.
  • G. Reents, Partial-tensor-product representations of the canonical commutation relations: Classification, J. Math. Phys. 11 (1970), 1961–1967.
  • I.E. Segal, Transforms for operators and symplectic automorphisms over a locally compact abelian group, Math. Scand. 13 (1963), 31–43.
  • F. Trèves, Topological vector spaces, distributions and kernels, Academic Press, Cambridge, MA, 1967.
  • A. Unterberger and H. Upmeier, The Berezin transform and invariant differential operators, Comm. Math. Phys. 164 (1994), 563–597.
  • N.E. Wegge-Olsen, $K$-theory and $C^*$-algebras, Oxford University Press, Oxford, 1993.
  • A. Weil, Sur certains groupes d'opérateurs unitaires, Acta Math. 111 (1964), 143–211.
  • J.A. Wolf, Stepwise square integrable representations of nilpotent Lie groups, Math. Ann. 357 (2013), 895–914.