Rocky Mountain Journal of Mathematics

Segal algebras in commutative Banach algebras

Jyunji Inoue and Sin-Ei Takahasi

Full-text: Open access

Abstract

The notion of Reiter's Segal algebra in commutative group algebras is generalized to a notion of Segal algebra in more general classes of commutative Banach algebras. Then we introduce a family of Segal algebras in commutative Banach algebras under considerations and study some properties of them.

Article information

Source
Rocky Mountain J. Math., Volume 44, Number 2 (2014), 539-589.

Dates
First available in Project Euclid: 4 August 2014

Permanent link to this document
https://projecteuclid.org/euclid.rmjm/1407154914

Digital Object Identifier
doi:10.1216/RMJ-2014-44-2-539

Mathematical Reviews number (MathSciNet)
MR3240514

Zentralblatt MATH identifier
1319.46040

Subjects
Primary: 46J10: Banach algebras of continuous functions, function algebras [See also 46E25]
Secondary: 46J40: Structure, classification of commutative topological algebras 43A25: Fourier and Fourier-Stieltjes transforms on locally compact and other abelian groups

Keywords
Segal algebra commutative Banach algebra group algebra Gelfand transform multiplier algebra

Citation

Inoue, Jyunji; Takahasi, Sin-Ei. Segal algebras in commutative Banach algebras. Rocky Mountain J. Math. 44 (2014), no. 2, 539--589. doi:10.1216/RMJ-2014-44-2-539. https://projecteuclid.org/euclid.rmjm/1407154914


Export citation

References

  • G.F. Bachelis, W.A. Parker and K.A. Ross, Local units in $L^1 (G)$, Proc. Amer. Math. Soc. 31 (1972), 312-313.
  • J.T. Burnham, Closed ideals in subalgebras of Banach algebras I, Proc. Amer. Math. Soc. 32 (1972), 551-555.
  • J. Cigler, Normed ideals in $L^1 (G)$, Indag. Math. 31 (1969), 273-282.
  • Y. Domar, Harmonic analysis based on certain commutative Banach algebras, Acta Math. 96 (1956), 1-66.
  • D.H. Dunford, Segal algebras and left normed ideals, J. Lond. Math. Soc. 8 (1974), 514-516.
  • H.G. Feichtinger, Zur Idealtheorie von Segal-Algebren, Manuscr. Math. 10 (1973), 307-312.
  • –––, Results on Banach ideals and spaces of multipliers, Math. Scand. 41 (1977), 315-324.
  • –––, A characterization of minimal homogeneous Banach spaces, Proc. Amer. Math. Soc. 81 (1981), 55-61.
  • –––, On a new Segal algebra, Monatsh. Math. 92 (1981), 269-289.
  • H.G. Feichtinger and P. Gröbner, Banach spaces of distributions defined by decomposition methods I, Math. Nachr. 123 (1985), 97-120.
  • H.G. Feichtinger and G. Narimani, Fourier multipliers of classical modulation spaces, Appl. Comp. Harmon. Anal. 21 (2006), 349-359.
  • E. Hewitt and K. Ross, Abstract harmonic analysis, Springer-Verlag, Berlin, 1963.
  • J. Inoue and S.-E. Takahasi, Constructions of bounded weak approximate identities for Segal algebras on LCA groups, Acta Sci. Math. 66 (2000), 257-271.
  • –––, On characterizations of the image of Gelfand transform of commutative Banach algebras, Math. Nachr. 280 (2007), 105-126.
  • C.A. Jones and C.D. Lahr, Weak and norm approximate identities are different, Pac. J. Math. 72 (1977), 99-104.
  • R. Larsen, An introduction to the theory of multipliers, Springer-Verlag, New York, 1971.
  • H. Reiter, $L^1$-algebras and Segal algebras, Lect. Notes Math. 231, Springer-Verlag, Berlin, 1971.
  • H. Reiter and J.D. Stegeman, Classical harmonic analysis and locally compact groups, Oxford Science Publications, Oxford, 2000.
  • M. Riemersma, On some properties of normed ideals in $L^1(G)$, Indag. Math. 37 (1975), 265-272.
  • W. Rudin, Fourier analysis on groups, Interscience Publishers, Inc., New York, 1962.
  • S.-E. Takahasi and O. Hatori, Commutative Banach algebras which satisfy a Bochner-Schoenberg-Eberlein-type theorem, Proc. Amer. Math. Soc. 110 (1990), 149-158.
  • H.-C. Wang, Homogeneous Banach algebras, Lect. Notes Pure Appl. Math. 29, Marcel Dekker, Inc., New York, 1977. \noindentstyle