Rocky Mountain Journal of Mathematics

Compact Carleson measures from sparse sequences

Tesfa Mengestie

Full-text: Open access


In [{\bf1}], Belov, Seip and the author studied the Carleson measures for certain spaces of analytic functions of which the de Branges spaces and the model subspaces of the Hardy space $H^2$ are prime examples. In this paper, we continue this line of research by studying the compact Carleson measures for such spaces.

Article information

Rocky Mountain J. Math., Volume 44, Number 1 (2014), 223-234.

First available in Project Euclid: 2 June 2014

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 30E05: Moment problems, interpolation problems 46E22: Hilbert spaces with reproducing kernels (= [proper] functional Hilbert spaces, including de Branges-Rovnyak and other structured spaces) [See also 47B32]


Mengestie, Tesfa. Compact Carleson measures from sparse sequences. Rocky Mountain J. Math. 44 (2014), no. 1, 223--234. doi:10.1216/RMJ-2014-44-1-223.

Export citation


  • Y. Belov, T. Mengestie and K. Seip, Discrete Hilbert transforms on sparse sequences, Proc. Lond. Math. Soc., doi: 10.1112/plms/pdq053.
  • –––, Unitary discrete Hilbert transforms, J. Anal. Math. 112 (2010), 383-393.
  • A. Borichev and Yu. Lyubarskii, Riesz bases of reproducing kernels in Fock-type spaces, J. Inst. Math. Juss. 9 (2010), 449-461.
  • G. Chacon, E. Fricain and M. ShaBankhah, Carleson measures and reproducing kernels thesis in Dirichlet-type spaces, arXiv:1009.180v2, 2011.
  • T. Mengestie, Two weight discrete Hilbert transforms and systems of reproducing kernels, Ph.D. thesis, Norwegian University of Science and Technology, 2011.
  • E. Nordgren, Composition operators on Hilbert spaces, Lect. Notes Math. 693 (1978), Springer-Verlag, Berlin. \noindentstyle