Rocky Mountain Journal of Mathematics

Survey Article: Characterizations of the Saito-Kurokawa lifting

David W. Farmer, Ameya Pitale, Nathan C. Ryan, and Ralf Schmidt

Full-text: Open access

Abstract

There are a variety of characterizations of Saito-Kurokawa lifts from elliptic modular forms to Siegel modular forms of degree~2. In addition to giving a survey of known characterizations, we apply a recent result of Weissauer to provide a number of new and simpler characterizations of Saito-Kurokawa lifts.

Article information

Source
Rocky Mountain J. Math., Volume 43, Number 6 (2013), 1747-1757.

Dates
First available in Project Euclid: 25 February 2014

Permanent link to this document
https://projecteuclid.org/euclid.rmjm/1393336656

Digital Object Identifier
doi:10.1216/RMJ-2013-43-6-1747

Mathematical Reviews number (MathSciNet)
MR3178443

Zentralblatt MATH identifier
1284.11084

Citation

Farmer, David W.; Pitale, Ameya; Ryan, Nathan C.; Schmidt, Ralf. Survey Article: Characterizations of the Saito-Kurokawa lifting. Rocky Mountain J. Math. 43 (2013), no. 6, 1747--1757. doi:10.1216/RMJ-2013-43-6-1747. https://projecteuclid.org/euclid.rmjm/1393336656


Export citation

References

  • A. Andrianov, Euler products corresponding to Siegel modular forms of genus $2$, Russ. Math. Surv. 29 (1974), 45-116.
  • –––, Modular descent and the Saito-Kurokawa conjecture, Invent. Math. 53 (1979), 267-280.
  • M. Asgari and R. Schmidt, Siegel modular forms and representations, Manuscripta Math. 104 (2001), 173-200.
  • S. Breulmann, On Hecke eigenforms in the Maaß space, Math. Z. 232 (1999), 527-530.
  • P. Deligne, Formes modulaires et repésentations $\ell$-adiques, Sem. Bourb. 355 (1968/69), Exposés 347-363, Lect. Notes Math. 175, Springer, Berlin, 1971.
  • –––, La conjecture de Weil, I, Publ. Math. IHES 43 (1974), 273-307.
  • M. Eichler and D. Zagier, The theory of Jacobi forms, Prog. Math. 55, Birkhäuser, New York, 1985.
  • S.A. Evdokimov, Characterization of the Maass space of Siegel modular cusp forms of genus 2, Mat. Sb. 112 (1980), 133-142, 144.
  • B. Heim, On the Spezialschar of Maass, Int. J. Math. Math. Sci., 2010.
  • –––, Distribution theorems for Saito-Kurokawa lifts, Raman. Math. Soc. Lect. Notes 15 (2011), 31-41.
  • T. Ikeda, On the lifting of elliptic cusp forms to Siegel cusp forms of degree $2n$, Ann. Math. 154 (2001), 641-681.
  • W. Kohnen, Modular forms of half-integral weight on $\Gamma_0(4)$, Math. Ann. 248 (1980), 249-266.
  • W. Kohnen and H. Kojima, A Maass space in higher genus, Comp. Math. 141 (2005), 313-322.
  • N. Kurokawa, Examples of eigenvalues of Hecke operators on Siegel cusp forms of degree two, Invent. Math. 49 (1978), 149-165.
  • H. Maass, Über eine Spezialschar von Modulformen zweiten Grades. I, II, III, Invent. Math. 53 (1979) 95-104, 249–253, 255–265.
  • T. Oda, On modular forms associated with indefinite quadratic forms of signature $(2,n−2)$, Math. Ann. 231 (1977/78), 97-144.
  • I.I. Piatetski-Shapiro, On the Saito-Kurokawa lifting, Invent. Math. 71 (1983), 309-338.
  • A. Pitale, Classical interpretation of the Ramanujan conjecture for Siegel cusp forms of degree $n$, Manuscr. Math. 130 (2009), 225-231.
  • A. Pitale and R. Schmidt, Sign changes of Hecke eigenvalues of Siegel cusp forms of degree $2$, Proc. Amer. Math. Soc. 136 (2008), 3831-3838.
  • –––, Ramanujan-type results for Siegel cusp forms of degree $2$, J. Raman. Math. Soc. 24 (2009), 87-111.
  • B. Roberts and R. Schmidt, Local newforms for $\GSp(4)$, Lect. Notes Math. 1918, Springer Verlag, Berlin, 2007.
  • –––, On modular forms for the paramodular group, in Automorphic forms and zeta functions, Proc. Conf. Mem. Tsuneo Arakawa, World Scientific, 2006.
  • R. Schmidt, On classical Saito-Kurokawa liftings, J. reine angew. Math. 604 (2007), 211-236.
  • R. Weissauer, Endoscopy for $\GSp(4)$ and the cohomology of Siegel modular three folds, Lect. Notes Math. 1968, Springer Verlag, Berlin, 2009.
  • S. Yamana, Maass relations in higher genus, Math. Z. 265 (2010), 263-276.
  • D. Zagier, Sur la conjecture de Saito-Kurokawa $($d'après H. Maass), Sem. Numb. Theor., Paris, 1979-80, 371–394; Progr. Math. 12, Birkhäuser, Boston, 1981. \noindentstyle