Rocky Mountain Journal of Mathematics

Multipliers on $L^p$-spaces for hypergroups

Sina Degenfeld-Schonburg and Rupert Lasser

Full-text: Open access

Article information

Rocky Mountain J. Math., Volume 43, Number 4 (2013), 1115-1139.

First available in Project Euclid: 9 September 2013

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 43A22: Homomorphisms and multipliers of function spaces on groups, semigroups, etc. 43A62: Hypergroups
Secondary: 43A15: $L^p$-spaces and other function spaces on groups, semigroups, etc.

Hypergroups multiplier Fourier-Stieltjes transform


Degenfeld-Schonburg, Sina; Lasser, Rupert. Multipliers on $L^p$-spaces for hypergroups. Rocky Mountain J. Math. 43 (2013), no. 4, 1115--1139. doi:10.1216/RMJ-2013-43-4-1115.

Export citation


  • W.R. Bloom and H. Heyer, Harmonic analysis of probability measure on hypergroups, de Gruyter, Berlin, 1995.
  • H. Emamirad and G.S. Heshmati, Pseudomeasure character of the ultraspherical semigroups, Semigroup Forum 65 (2002), 336-347.
  • F. Ghahramani and A.R. Medgalchi, Compact multipliers on weighted hypergroup algebras, Math. Proc. Cambr. Philos. Soc. 98 (1985), 493-500.
  • E. Hewitt and K.A. Ross, Abstract harmonic analysis I, Springer, Berlin, 1963.
  • R.I. Jewett, Spaces with an abstract convolution of measures, Adv. Math. 18 (1975), 1-101.
  • R. Larsen, An introduction to the theory of multipliers, Springer, Berlin, 1971.
  • R. Lasser, Fourier-Stieltjes transforms on hypergroups, Analysis 2 (1982), 281-303.
  • –––, Orthogonal polynomials and hypergroups, Rend. Math. 3 (1983), 185-209.
  • –––, Orthogonal polynomials and hypergroups II-The symmetric case, Trans. Amer. Math. Soc. 341 (1994), 749–770.
  • –––, On the character space of commutative hypergroups, DMV Jahr. 104 (2002), 3-16.
  • L. Pavel, Multipliers for the $L_p$-spaces of a hypergroup, Rocky Mountain J. Math. 37 (2007), 987-1000.
  • R. Spector, Mesures invariantes sur les hypergroupes, Trans. Amer. Math. Soc. 239 (1978), 147-165.
  • A. Zygmund, Trigonometric series I and II, Cambridge University Press, New York, 1959. \vglue-4pt \noindentstyle