Rocky Mountain Journal of Mathematics

Critical Curve of the Non-Newtonian Polytropic Filtration Equations Coupled via Nonlinear Boundary Flux

Zhaoyin Xiang, Chunlai Mu, and Yulan Wang

Full-text: Open access

Article information

Source
Rocky Mountain J. Math., Volume 39, Number 2 (2009), 689-705.

Dates
First available in Project Euclid: 7 April 2009

Permanent link to this document
https://projecteuclid.org/euclid.rmjm/1239113455

Digital Object Identifier
doi:10.1216/RMJ-2009-39-2-689

Mathematical Reviews number (MathSciNet)
MR2491161

Zentralblatt MATH identifier
1172.35006

Subjects
Primary: 35K50 35K55: Nonlinear parabolic equations 35K65: Degenerate parabolic equations 35B33: Critical exponents

Keywords
Non-Newtonian polytropic filtration equations nonlinear boundary flux global existence blow-up critical curve

Citation

Xiang, Zhaoyin; Mu, Chunlai; Wang, Yulan. Critical Curve of the Non-Newtonian Polytropic Filtration Equations Coupled via Nonlinear Boundary Flux. Rocky Mountain J. Math. 39 (2009), no. 2, 689--705. doi:10.1216/RMJ-2009-39-2-689. https://projecteuclid.org/euclid.rmjm/1239113455


Export citation

References

  • K. Deng and H.A. Levine, The role of critical exponents in blow-up theorems: The sequel, J. Math. Anal. Appl. 243 (2000), 85-126.
  • E. Dibenedetto, Degenerate parabolic equations, Springer-Verlag, Berlin, 1993.
  • V.A. Galaktionov and H.A. Levine, On critical Fujita exponents for heat equations with nonlinear flux conditions on the boundary, Israel J. Math. 94 (1996), 125-146.
  • A.V. Ivanov, Hölder estimates for quasilinear doubly degenerate parabolic equations, J. Soviet Math. 56 (1991), 2320-2347.
  • A.S. Kalashnikov, Some problems of the qualitative theory of nonlinear degenerate parabolic equations of second order, Russian Math. Surveys 42 (1987), 169-222.
  • H.A. Levine, The role of critical exponents in blow up theorems, SIAM Rev. 32 (1990), 262-288.
  • A. de Pablo, F. Quiros and J.D. Rossi, Asymptotic simplification for a reaction-diffusion problem with a nonlinear boundary condition, IMA J. Appl. Math. 67 (2002), 69-98.
  • F. Quiros and J.D. Rossi, Blow-up sets and Fujita type curves for a degenerate parabolic system with nonlinear boundary condtions, Indiana Univ. Math. J. 50 (2001), 629-654.
  • A.A. Samarskii, V.A. Galaktionov, S.P. Kurdyumov and A.P. Mikhailov, Blow-up in quasilinear parabolic equations, Walter de Gruyter, Berlin, 1995.
  • J.L. Vazquez, The porous medium equations: Mathematical theory, Oxford Univ. Press, to appear.
  • Z.J. Wang, J.X. Yin and C.P. Wang, Critical exponents of the non-Newtonian polytropic filtration equation with nonlinear boundary condition, Appl. Math. Letters 20 (2007), 142-147.
  • Z.Q. Wu, J.N. Zhao, J.X. Yin and H.L. Li, Nonlinear diffusion equations, World Scientific Publishing Co., Inc., River Edge, NJ, 2001.
  • Z.Y. Xiang, Q. Chen and C.L. Mu, Blow-up rates for a degenerate parabolic system coupled in an equation and a boundary condition, preprint.
  • Z.Y. Xiang and C.L. Mu, Blowup behaviors for degenerate parabolic equations coupled via nonlinear boundary flux, Comm. Pure Appl. Anal. 6 (2007), 487-503.
  • S.N. Zheng, X.F. Song and Z.X. Jiang, Critical Fujita exponents for degenerate parabolic equations coupled via nonlinear boundary flux, J. Math. Anal. Appl. 298 (2004), 308-324.