Rocky Mountain Journal of Mathematics
- Rocky Mountain J. Math.
- Volume 38, Number 4 (2008), 1215-1251.
A Nested Embedding Theorem for Hardy-Lorentz Spaces with Applications to Coefficient Multiplier Problems
Full-text: Open access
Article information
Source
Rocky Mountain J. Math., Volume 38, Number 4 (2008), 1215-1251.
Dates
First available in Project Euclid: 1 July 2008
Permanent link to this document
https://projecteuclid.org/euclid.rmjm/1214947608
Digital Object Identifier
doi:10.1216/RMJ-2008-38-4-1215
Mathematical Reviews number (MathSciNet)
MR2436720
Zentralblatt MATH identifier
1175.30047
Subjects
Primary: 30D55 30H05: Bounded analytic functions 42A16: Fourier coefficients, Fourier series of functions with special properties, special Fourier series {For automorphic theory, see mainly 11F30} 46A16: Not locally convex spaces (metrizable topological linear spaces, locally bounded spaces, quasi-Banach spaces, etc.) 46A45: Sequence spaces (including Köthe sequence spaces) [See also 46B45] 46E10: Topological linear spaces of continuous, differentiable or analytic functions 46E15: Banach spaces of continuous, differentiable or analytic functions 46E30: Spaces of measurable functions (Lp-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
Keywords
Hardy-Lorentz nonlocally convex dual space coefficient multiplier mixed norm Bergman
Citation
Lengfield, Marc. A Nested Embedding Theorem for Hardy-Lorentz Spaces with Applications to Coefficient Multiplier Problems. Rocky Mountain J. Math. 38 (2008), no. 4, 1215--1251. doi:10.1216/RMJ-2008-38-4-1215. https://projecteuclid.org/euclid.rmjm/1214947608
References
- P. Ahern and M. Jevtic, Duality and multipliers for mixed norm spaces, Mich. Math. J. 30 (1983), 53-64.Mathematical Reviews (MathSciNet): MR694928
Digital Object Identifier: doi:10.1307/mmj/1029002787
Project Euclid: euclid.mmj/1029002787 - A.B. Aleksandrov, Essays on non-locally convex Hardy classes, in Complex analysis and spectral theory, V.P. Havin and N.K. Nikolskii, eds., Lecture Notes Math. 864, Springer, Berlin, 1981%, 1-89.
- J.M. Anderson and A.L. Shields, Coefficient multipliers of Bloch functions, Trans. Amer. Math. Soc. 224 (1976), 255-265.Mathematical Reviews (MathSciNet): MR419769
Zentralblatt MATH: 0352.30032
Digital Object Identifier: doi:10.2307/1997474 - A. Baernstein, D. Girela and J.A. Pelaez, Univalent functions, Hardy spaces and spaces of Dirichlet type, Illinois J. Math. 48 (2004), 837-859.
- C. Bennett and R. Sharpley, Interpolation of operators, Academic Press, New York, 1988.Mathematical Reviews (MathSciNet): MR928802
- O. Blasco, Duality for Lipscitz and Dini classes: $\Lambda _\alpha ^p$ and $D_\alpha ^p$ $(1 < p < \infty,\allowbreak 0 < \alpha < 1)$, Math. Sci. Research Inst., Berkeley, California, March 1988.
- O. Blasco, Operators on weighted Bergman spaces, Duke Math. J. 66 (1992), 443-467.Mathematical Reviews (MathSciNet): MR1167102
Zentralblatt MATH: 0815.47035
Digital Object Identifier: doi:10.1215/S0012-7094-92-06614-2
Project Euclid: euclid.dmj/1077294897 - --------, Multipliers on spaces of analytic functions, Canad. J. Math. 47 (1995), 44-64.Mathematical Reviews (MathSciNet): MR1319689
- R.R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in $L_p$, Asterique 77 (1980), 110-150.Mathematical Reviews (MathSciNet): MR545288
- P.L. Duren, Theory of $H^p$ spaces, Academic Press, New York, 1970.
- P.L. Duren, B.W. Romberg and A.L. Shields, Linear functionals on $H^p$-spaces with $0 < p < 1$, J. reine Angew. Math. 238 (1969), 32-60.Mathematical Reviews (MathSciNet): MR259579
- P.L. Duren and A.L. Shields, Properties of $H^p$ $(0<p<1)$ and its containing Banach space, Trans. Amer. Math. Soc. 141 (1969), 255-262.Mathematical Reviews (MathSciNet): MR244751
Digital Object Identifier: doi:10.2307/1995102
JSTOR: links.jstor.org - --------, Coefficient multipliers of $H^p$ and $B^p$ spaces, Pacific J. Math. 32 (1970), 69-78.Mathematical Reviews (MathSciNet): MR255825
Zentralblatt MATH: 0187.37701
Project Euclid: euclid.pjm/1102977524 - J. Fabrega and J. Ortega, Mixed-norm spaces and interpolation, Studia Math. 109 (1994), 233-254.
- C. Fefferman, N.M. Riviere and Y. Sagher, Interpolation between $H^p$ spaces: The real method, Trans. Amer. Math. Soc. 191 (1974), 75-81.Mathematical Reviews (MathSciNet): MR388072
Zentralblatt MATH: 0285.41006
Digital Object Identifier: doi:10.2307/1996982 - T.M. Flett, The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math. Anal. Appl. 38 (1972), 746-765.Mathematical Reviews (MathSciNet): MR304667
Zentralblatt MATH: 0246.30031
Digital Object Identifier: doi:10.1016/0022-247X(72)90081-9 - --------, Lipschitz spaces of functions on the circle and the disc, J. Math. Anal. Appl. 39 (1972), 125-158.Mathematical Reviews (MathSciNet): MR313779
Zentralblatt MATH: 0253.46084
Digital Object Identifier: doi:10.1016/0022-247X(72)90230-2 - A. Frazier, The dual space of $H^p$ of the polydisk for $0 < p < 1$, Duke Math J. 39 (1972), 369-379.Mathematical Reviews (MathSciNet): MR293119
Zentralblatt MATH: 0237.32005
Digital Object Identifier: doi:10.1215/S0012-7094-72-03944-0
Project Euclid: euclid.dmj/1077380275 - S. Gadbois, Mixed-norm generalizations of Bergman spaces and duality, Proc. Amer. Math. Soc. 104 (1988), 1171-1180.Mathematical Reviews (MathSciNet): MR948149
Zentralblatt MATH: 0691.32002
Digital Object Identifier: doi:10.2307/2047609 - K. Grosse-Erdmann, The blocking technique: Weighted mean operators and Hardy's inequality, Lecture Notes Math. 1679, Springer, Berlin, 1998.
- G.H. Hardy and J.E. Littlewood, Some properties of fractional integrals II, Math. Z. 34 (1932), 403-439.Mathematical Reviews (MathSciNet): MR1545260
Zentralblatt MATH: 0003.15601
Digital Object Identifier: doi:10.1007/BF01180596 - --------, Notes on the theory of series (XX). Generalizations of a theorem of Paley, Quart. J. Math. %Oxford Ser., 8 (1937), 161-171.
- M. Jevtic, On the dual of $A_1^p(\phi)$ and $A_\infty ^p(\phi )$ when $1 < p < \infty$, Mat. Vesnick 35 (1983), 121-127.Mathematical Reviews (MathSciNet): MR741590
- --------, Bounded projections and duality in mixed norm spaces of analytic functions, Complex Variables 8 (1987), 293-301.
- --------, Analytic Besov space $B^p$, $0 < p < 1$, Publ. Math. Debrecen. 52 (1988), 127-136.
- M. Jevtic and I. Jovanovic, Coefficient multipliers of mixed norm spaces, Canad. Math. Bull. 36 (1993), 283-285.Mathematical Reviews (MathSciNet): MR1245812
- M. Jevtic and M. Pavlovic, On multipliers from $H^p$ to $\ell^q$, $0 < q < p < 1$, Arch. Math. 56 (1991), 174-180.Mathematical Reviews (MathSciNet): MR1086485
Zentralblatt MATH: 0686.30027
Digital Object Identifier: doi:10.1007/BF01200348 - --------, Coefficient multipliers on spaces of analytic functions, Acta. Sci. Math. (Szeged) 64 (1998), 531-545.Mathematical Reviews (MathSciNet): MR1666039
- P.W. Jones, $L^\infty$-estimates for the $\overline\partial $-problem in the half-plane, Acta. Math. 150 (1983), 137-152.Mathematical Reviews (MathSciNet): MR697611
Zentralblatt MATH: 0516.35060
Digital Object Identifier: doi:10.1007/BF02392970 - N. Kalton, Endomorphisms of symmetric function spaces, Indiana Univ. Math. J. 34 (1985), 225-247.Mathematical Reviews (MathSciNet): MR783913
Zentralblatt MATH: 0572.46029
Digital Object Identifier: doi:10.1512/iumj.1985.34.34014 - C.N. Kellogg, An extension of the Hausdorff-Young theorem, Michigan Math. J. 18 (1971), 121-127.Mathematical Reviews (MathSciNet): MR280995
Digital Object Identifier: doi:10.1307/mmj/1029000635
Project Euclid: euclid.mmj/1029000635 - P. Koosis, Introduction to $H_p$-spaces, London Math. Soc., Lecture Notes Series 40, Cambridge University Press, Cambridge, 1980.Mathematical Reviews (MathSciNet): MR565451
- M. Lengfield, Duals and envelopes of some Hardy-Lorentz spaces, Proc. Amer. Math. Soc. 133 (2005), 1401-1499.Mathematical Reviews (MathSciNet): MR2111965
Zentralblatt MATH: 1074.32002
Digital Object Identifier: doi:10.1090/S0002-9939-04-07656-7 - J.E. Littlewood and R.E.A.C. Paley, Theorems on Fourier series and power series II, Proc. London Math. Soc. 42 (1936), 52-89.
- D.H. Luecking, Representation and duality in weighted spaces of analytic functions, Indiana Univ. Math. J. 34 (1985), 319-336.Mathematical Reviews (MathSciNet): MR783918
Digital Object Identifier: doi:10.1512/iumj.1985.34.34019 - --------, A new proof of an inequality of Littlewood and Paley, Proc. Amer. Math. Soc. 103 (1988), 887-893.Mathematical Reviews (MathSciNet): MR947675
Zentralblatt MATH: 0665.30035
Digital Object Identifier: doi:10.2307/2046870 - M.M.H. Marzuq, Linear functionals on some weighted Bergman spaces, Bull. Australian Math. Soc. 42 (1995), 413-426.Mathematical Reviews (MathSciNet): MR1083278
Digital Object Identifier: doi:10.1017/S0004972700028586 - M. Mateljevic and M. Pavlovic, Multipliers of $H^p$ and $BMOA$, Pacific J. Math. 146 (1990), 71-84.Mathematical Reviews (MathSciNet): MR1073520
Zentralblatt MATH: 0731.30029
Project Euclid: euclid.pjm/1102645310 - --------, Duality and multipliers in Lipschitz spaces, Proc. Inter. Conference on Complex Analysis, Varna, 1983.Zentralblatt MATH: 0589.42010
- --------, $L^p$-behavior of power series with positive coefficients and Hardy spaces, Proc. Amer. Math. Soc. 87 (1983), 309-316.Mathematical Reviews (MathSciNet): MR681840
Zentralblatt MATH: 0524.30023
Digital Object Identifier: doi:10.2307/2043708
JSTOR: links.jstor.org - --------, $L^p$-behavior of the integral means of analytic functions, Studia Math. 77 (1984), 219-237.Mathematical Reviews (MathSciNet): MR745278
- M. Pavlovic, Mixed norm spaces of analytic and harmonic functions I, Publ. Inst. Math. 40 (1986), 117-141.Mathematical Reviews (MathSciNet): MR883941
- --------, Mixed norm spaces of analytic and harmonic functions II, Publ. Inst. Math. 41 (1987), 97-110.
- G. Pisier, Interpolation between $H^p$ spaces and non-commutative generalizations I, Pacific J. Math. 155 (1992), 475-484.
- W.H. Ruckle, Sequence spaces, Research Notes Math. 49, Pitman Advanced Publishing Program, London, 1981.Mathematical Reviews (MathSciNet): MR634231
- J. Shapiro, Lindar functionals on non-locally convex spaces, Ph.D thesis, University of Michigan, Ann Arbor, 1969.
- --------, Mackey topologies, reproducing kernels, and diagonal maps in the Hardy and Bergman spaces, Duke Math. J. 43 (1976), 187-202.Mathematical Reviews (MathSciNet): MR500100
Digital Object Identifier: doi:10.1215/S0012-7094-76-04316-7
Project Euclid: euclid.dmj/1077311499 - J.H. Shi, On the rate of growth of the integral means $M_p$ of holomorphic and pluriharmonic functions on bounded symmetric domains in $\bf C^n$, J. Math. Anal. Appl. 26 (1987), 161-175.Mathematical Reviews (MathSciNet): MR900536
Zentralblatt MATH: 0625.32003
Digital Object Identifier: doi:10.1016/0022-247X(87)90083-7 - --------, Inequalities for the integral means of holomorphic functions and their derivatives in the unit ball of $\bf C^n$, Trans. Amer. Math. Soc. 328 (1991), 619-637.Mathematical Reviews (MathSciNet): MR1016807
Zentralblatt MATH: 0761.32001
Digital Object Identifier: doi:10.2307/2001797
JSTOR: links.jstor.org - J.H. Shi, Duality and multipliers for mixed norm spaces in the unit ball I, Complex Variables 25 (1994), 119-130.Mathematical Reviews (MathSciNet): MR1314511
- --------, Duality and multipliers for mixed norm spaces in the unit ball II, Complex Variables 25 (1994), 131-157.
- A.L. Shields and D.L. Williams, Bounded projections, duality, and multipliers in spaces of analytic functions, Trans. Amer. Math. Soc. 162 (1971), 287-302.
- W. Sledd, Some results about spaces of analytic functions introduced by Hardy and Littlewood, J. London Math Soc. 2 (1974), 328-336.Mathematical Reviews (MathSciNet): MR361091
Zentralblatt MATH: 0295.42003
Digital Object Identifier: doi:10.1112/jlms/s2-9.2.328 - M. Taibleson, On the theory of Lipschitz spaces of distributions on Euclidean $n$-space II, Translation-invariant operators, duality, and interpolation, J. Math. Mech. 14 (1965), 821-839.Mathematical Reviews (MathSciNet): MR180857
- A.E. Taylor, Banach spaces of functions analytic in the unit circle I, Studia Math. 12 (1950), 25-50.Mathematical Reviews (MathSciNet): MR43377
- K. Zhu, Bergman and Hardy spaces with small exponents, Pacific J. Math. 162 (1994), 189-199.Mathematical Reviews (MathSciNet): MR1247148
Zentralblatt MATH: 0798.32007
Project Euclid: euclid.pjm/1102623050 - A. Zygmund, Trigonometric series, Volumes I, II, Third ed., Cambridge Math. Library, Cambridge, 2002.
- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Fourier multiplier norms of spherical functions on the generalized Lorentz groups
Steenstrup, Troels, Advances in Operator Theory, 2018 - A transplantation theorem for the Hankel transform on the Hardy space
Kanjin, Yuichi, Tohoku Mathematical Journal, 2005 - A Generalization of the Hankel Transform and the Lorentz
Multipliers
Sato, Enji, Tokyo Journal of Mathematics, 2006
- Fourier multiplier norms of spherical functions on the generalized Lorentz groups
Steenstrup, Troels, Advances in Operator Theory, 2018 - A transplantation theorem for the Hankel transform on the Hardy space
Kanjin, Yuichi, Tohoku Mathematical Journal, 2005 - A Generalization of the Hankel Transform and the Lorentz
Multipliers
Sato, Enji, Tokyo Journal of Mathematics, 2006 - Noncommutative Hardy–Lorentz spaces associated with semifinite subdiagonal algebras
Han, Yazhou, Banach Journal of Mathematical Analysis, 2016 - A Multiplier Theorem for Herz-Type Hardy Spaces Associated with the Dunkl
Transform
Gasmi, A., Abstract and Applied Analysis, 2013 - Coefficient multipliers of $H^1$ into $\ell^q$ associated with Laguerre expansions
SHI, Yehao and LI, Zhongkai, Journal of the Mathematical Society of Japan, 2016 - Atomic decomposition of martingale weighted Lorentz spaces with two-parameter and applications
Mohsenipour, Maryam and Sadeghi, Ghadir, Rocky Mountain Journal of Mathematics, 2017 - Multipliers of Hardy spaces associated with Laguerre expansions
SHI, Yehao and LI, Zhongkai, Journal of the Mathematical Society of Japan, 2016 - Carleson measures for analytic Besov spaces
Arcozzi, Nicola, Rochberg, Richard, and Sawyer, Eric, Revista Matemática Iberoamericana, 2002 - Improved direct and converse theorems in weighted Lorentz
spaces
Akgün, Ramazan and Yıldırır, Yunus Emre, Bulletin of the Belgian Mathematical Society - Simon Stevin, 2016