Rocky Mountain Journal of Mathematics

Orthomodular Lattices and Quadratic Spaces: A Survey

Robert Piziak

Full-text: Open access

Article information

Source
Rocky Mountain J. Math., Volume 21, Number 3 (1991), 951-992.

Dates
First available in Project Euclid: 5 June 2007

Permanent link to this document
https://projecteuclid.org/euclid.rmjm/1181072924

Digital Object Identifier
doi:10.1216/rmjm/1181072924

Mathematical Reviews number (MathSciNet)
MR1138146

Zentralblatt MATH identifier
0767.06010

Citation

Piziak, Robert. Orthomodular Lattices and Quadratic Spaces: A Survey. Rocky Mountain J. Math. 21 (1991), no. 3, 951--992. doi:10.1216/rmjm/1181072924. https://projecteuclid.org/euclid.rmjm/1181072924


Export citation

References

  • I. Amemiya and H. Araki, A remark on Piron's paper, Publ. Res. Inst. Math. Soc., Ser A 2, (1966-67), 423-427, MR35#4130.
  • -------- and I. Halperin, Complemented modular lattices, Canad. Math. 11 (1950), 481-520.
  • R. Arens, Operational calculus of linear relations, Pacific J. Math. 11 (1961), 9-23.
  • E.G. Beltrametti and G. Cassinelli, Quantum mechanics and $p$-adic numbers, Found. Physics 2 (1972), 1-7.
  • -------- and --------, On the logic of quantum mechanics, Z. Naturforsch. A 8 (1973), 1516-1530.
  • -------- and --------, Logical and mathematical structures of quantum mechanics, Riv. Nuovo Cimento 6 (1976), 321-405.
  • M.K. Bennett, A finite orthomodular lattice which does not admit a full set of states, SIAM Rev. 12 (1970), 267-271.
  • L. Beran, Three identities for ortholattices, Notre Dame J. Formal Logic 18 (1977), 251-252.
  • G. Birkhoff, Ordered sets in geometry, in Ordered sets (I. Rival ed.), Reidel Dordrecht, 1982, 407-443.
  • -------- and J. von Neumann, The logic of quantum mechanics, Ann. of Math. 37 (1936), 823-843.
  • K. Bugajska, On the representation theorem for quantum logic, Internat. J. theoret. Phys. 9, (1974), 93-99.
  • -------- and S. Bugajski, On the axioms of quantum mechanics, Bulletin de l'Académie Polonaise des Sciences, Série des sciences mathématiques, astronomiques et physiques, 20 (1972), 231-234.
  • -------- and --------, The lattice structure of quantum logics, Annales de l'Institut Henri Poincaré 19 1973), 333-340.
  • D.E. Catlin, Spectral theory in quantum logics, Internat. J. Theoret. Phys. 1 (1968), 285-297.
  • --------, Irreducibiilty conditions on orthomodular lattices, J. Natur. Sci. Math. 8 (1968), 81-87, MR38#2064.
  • --------, Implicative pairs in orthomodular lattices, Caribbean J. Math. 1 (1969), 69-79.
  • --------, Cyclic atoms in orthomodular lattices, Proc. Amer. Math. Soc. 30 (1971), 412-418.
  • A. Church, Review of G. Birkhoff and J. von Neumann ``The logic of quantum mechanics," J. Symbolic Logic 2 (1937), 44-45.
  • R. Cirrelli and P. Cota-Ramusino, On the isomorphism of a `quantum logic' with the logic of projections in a Hilbert space, Internat. J. Theoret. Phys. 8 (1973), 11-29.
  • T.A. Cook, The geometry of generalized quantum logics, Internat. J. Theoret. Phys. 17 (1978), 941-955.
  • G. Dähn, Attempt of an axiomatic foundation of quantum mechanics and more general theories, Comm. Math. Phys. 9 (1968), 192-211.
  • R.P. Dilworth, On complemented lattices, Tôhoku Math. J. 47 (1940), 18-23.
  • J.P. Eckmann and P. Zabey, Impossibility of quantum mechanics in a Hilbert space over a finite field, Helv. Phys. Acta 42 (1969), 420-424.
  • A. Fässler-Ullman, On nonclassical Hilbert spaces, Exposition. Math. 1 (1982),
  • P.A. Fillmore, Perspectivity in projection lattices, Proc. Amer. Math. Soc. 16 (1965), 383-387.
  • P.D. Finch, On the structure of quantum logic, J. Symbolic Logic 34 (1969), 275-282.
  • --------, On the lattice structure of quantum logic, Bull Austral. Math. Soc. 1 (1969), 333-340.
  • D. Finkelstein, J. Jauch and D. Speiser, Noes on quaternionic quantum mechanics, CERN, (1979), 59-7.
  • H.R. Fischer and H. Gross, Quadratic forms and linear topologies, I, Ann. Math. (1964), 157.
  • D.J. Foulis, Conditions for the modularity of an orthomodular lattice, Pacific J. Math. 11 (1961), 889-895.
  • -------- and C.H. Randall, Empirical logic and quantum mechanics, Synthese 29 (1974), 81-111.
  • A. Frapolli, Generalizzazione di un theorema di H.A. Keller sulla modularita del reticolo dei sottospazi ortogonalmente chiusi di uno spazio sesquilinearem, Master's Thesis, Univ. of Zurich, 1975.
  • R. Giles, Foundations for quantum mechanics, J. Math. Phys. 11 (1970), 2139-2160.
  • A.M. Gleason, Measures on the closed subspaces of a Hilbert space, J. Math. Mech. 6 (1957), 885-893.
  • R.J. Greechie, Hyper-Irreducibility in an orthomodular lattice, J. Natur. Sci. Math. 8 (1968), 109-111.
  • H. Gross and P. Hafner, The sublattice of an orthogonal pair in a modular lattice, Ann. Acad. Sci. Fenn. Ser. A I Math. 4 (1978/79), 31-40.
  • --------, Isomorphisms between lattices of linear subspaces which are induced by isometries, J. Algebra 49 (1977), 537-546.
  • -------- and H.A. Keller, On the definition of Hilbert space, Manuscripta Math. 23 (1977), 67-90.
  • -------- and E. Ogg, Quadratic forms and linear topologies, VI, Comment. Math. Helv. 48 (1973), 511-519.
  • -------- and U.-M. Künzi, On a class of orthomodular quadratic spaces, L'Enseignment Mathématique, tome 31, (1985), 187-212.
  • --------, Quadratic forms and Hilbert lattices, Proc. Vienna Conference (June 21-24, 1984), Teubner, Verlag, Stuttgart and Holder-Pichler-Tempsky, Vienna, 1985.
  • --------, Different orthomodular orthocomplementations on a lattice, Order 4 (1987), 79-92.
  • --------, Z. Lomecky and R. Schuppli, Lattice problems originating in quadratic space theory, Algbra Universalis 20 (1985), 267-291.
  • S.P. Gudder, A survey of axiomatic quantum mechanics, in G.A. Hooker [60], 1979, 323-363.
  • -------- and J.R. Michel, Embedding quantum logics in Hilbert space, Lett. Math. Phys. 3 (1979), 379-386.
  • -------- and C. Piron, Observables and the field in quantum mechanics, J. Math. Phys. 12 (1971), 1583-1588, MR46#8552.
  • J. Gunson, On the algebraic structure of quantum mechanics, Comm. Math. Phys. 6, (1967), 262-285.
  • L. Haskins, S.P. Gudder and R.J. Greechie, Perspectivity in semimodular-orthomodular posets, J. London Math. Soc. (2) 9 (1975), 495-500.
  • L. Herman, E. Marsden and R. Piziak, Implication connectives in orthomodular lattices, Notre Dame J. Formal Logic 16 (1975), 305-328.
  • -------- and R. Piziak, Modal propositional logic on an orthomodular basis, I, J. Symbolic Logic 39 (1974), 478 -488.
  • S.S. Holland, Jr., A Radon-Nikodym theorem in dimension lattices, Trans. Amer. Math. Soc. 108, (1963), 66-87.
  • --------, Distributivity and perspectivity in orthomodular lattices, Trans. Amer. Math. Soc. 112 (1964), 330-343, MR29#5760.
  • --------, Partial solution to Mackey's problem about modular pairs and completeness, Canad. J. Math. 21 (1969), 1518-1525, MR40#6240.
  • --------, An orthocomplete orthomodular lattice is complete, Proc. Amer. Math. Soc. 24 (1970), 716-718.
  • --------, Remarks on type I Baer $^*$-rings, J. Algebra 27 (1973), 516-522, MR48#8554.
  • --------, Isomorphisms between interval sublattices of an orthomodular lattice, Hiroshima Math. J. 3 (1973), 227-241.
  • --------, Orderings and square roots in $^*$-fields, J. Algebra 46 (1977), 207-219.
  • --------, $^*$-valuations and ordered $^*$-fields, Trans. Amer. Math. Soc. 262 (1980), 219-243; see also erratum 267 (1981), 333.
  • --------, Strong ordering of $^*$-fields, J. Algebra 101 (1986), 16-46,\noindent MR87k#12014.
  • C.A. Hooker (ed), The Logico-Algebraic approach to quantum mechanics, Vol. I, 1975; Contemporary Consolidations, Vol II, Reidel, Dordrecht, 1979.
  • M.F. Janowitz, Quantifiers and orthomodular lattices, Pacific J. Math. 13 (1963), 1241-1249.
  • B. Jonsson, Distributive sublattices of a modular lattice, Proc. Amer. Math. Soc. 6 (1955), 682-688.
  • S. Kakutani and G.W. Mackey, Two characterizations of real Hilbert spaces, Ann. of Math. 45 (1944), 50-58.
  • -------- and --------, Ring and lattice characterizations of complex Hilbert spaces, Bull. Amer. Math. Soc. 52 (1946), 727-733.
  • G.K. Kalisch, On $p$-adic Hilbert spaces, Ann. of Math. 48 (1947), 180-192.
  • I. Kaplansky, Maximal fields with valuations, Duke Math. J. 9 (1942), 303-321.
  • --------, Forms in infinite dimensional spaces, An. Acad. Brasil Ciênc. 22 (1950), 1-17, MR12#238.
  • --------, Orthogonal similarity in infinite dimensional spaces, Proc. Amer. Math. Soc. 3 (1952), 16-25.
  • --------, Quadratic forms, J. Math. Soc. Japan 6, (1953), 200-207.
  • --------, Any orthocomplemented complete modular lattice is a continuous geometry, Ann. of Math. 61 (1955), 524-541.
  • H.A. Keller, On the lattice of all closed subspaces of a hermitean space, Pacific J. Math. 89 (1980), 105-110.
  • --------, Ein nicht-klassischer Hilbertscher Raum, Math. Z. 172 (1980), 41-49.
  • --------, Measures on nonclassical Hilbertian Spaces, Notas Matematicas, No. 16, Universidad Catolica, Santiago, Chile, 1984.
  • --------, On valued complete fields and their automorphisms, Pacific J. Math. 121 (1986), 397-406, MR87f#12017.
  • U.-M. Künzi, Nichtklassiche Hilberträume über bewerteten Körpern, Master's Thesis, Univ. of Zurich, 1980.
  • --------, Orthomodulare Räume über bewerteten Körpern, Ph.D. Thesis, Univ. of Zurich, 1984.
  • --------, A Hilbert lattice with a small automorphism group, Canad. Math. Bull. 30 (1987), 182-185.
  • G.W. Mackey, On infinite dimensional linear spaces, Trans. Amer. Math. Soc. 57, 155-207, MR6#274;7#620.
  • --------, Quantum mechanics and Hilbert space, Amer. Math. Monthly 64 (1957), 45-57.
  • M.D. MacLaren, Atomic orthocomplemented lattices, Pacific J. Math. 14 (1964), 579-612.
  • --------, Nearly modular orthocomplemented lattices, Trans. Amer. Math. Soc. (1964), 401-416, MR33#80.
  • M.J. Maczynski, A remark on Mackey's axiom system for quantum mechanics, Bulletin de l'Académie Polonaise des Sciences, Série des sciences mathématiques, astronomiques et physiques, 15 (1967), 583-587.
  • --------, Quantum families of Boolean algebras, Bulletin de l'Académie Polonaise des Sciences, Série des sciences mathématiques, astronomiques et physiques 18 (1970), 93-95.
  • --------, Boolean properties of observables in axiomatic quantum mechanics, Reports on Mathematical Physics 2 (1971), 135-150.
  • --------, Hilbert space formalism of quantum mechanics without the Hilbert space axiom, Rep. Math. Phys. 3 (1972), 209-219.
  • --------, The field of real numbers in axiomatic quantum mechanics, J. Math. Phys. 14 (1973), 1469-1471, MR48#7798.
  • --------, On a lattice characterization of Hilbert spaces, Colloq. Math. 31 (1974), 243-248.
  • --------, When the topology of an infinite dimensional Banach space coincides with a Hilbert space topology, Studia. Math. XLIX (1974), 149-152.
  • --------, Orthomodularity and lattice characterization of Hilbert spaces, Bull. Acad. Polon. Sci. 24 (1976), 481-484.
  • --------, A remark on Mackey's problem about modular pairs and completeness, Bull. Acad. Polon. Sci. 25 (1977), 27-31.
  • R.P. Morash, The orthomodular identity and metric completeness of the coordinatizing division ring, Proc. Amer. Math. Soc. 27 (1971), 446-448; supplement Proc. Amer. Math. Soc. 29 (1971), 627.
  • --------, Orthomodularity and the direct sum of division subrings of the quaternions, Proc. Amer. Math. Soc. 36 (1972), 63-68, MR47#787.
  • --------, Angle bisection and orthoautomorphisms in Hilbert lattices, Canad. J. Math. 25 (1973), 261-272, MR47#1698.
  • --------, Remarks on the classification problem for infinite dimensional Hilbert lattices, Proc. Amer. Math. Soc. 43 (1974), 42-46.
  • --------, Orthomodularity and nonstandard constructions, Glasnik Mat. Ser. III, 10 (1975), 231-239.
  • --------, The hyperoctant property in orthomodular AC lattices, Proc. Amer. Math. Soc. 57 (1976), 206-212.
  • --------, Infinite dimensional Hilbert lattices, Ph.D. Thesis, Univ. of Massachusetts, 1971.
  • G.M.M. Obi, An algebraic closed graph theorem, Pacific J. Math. 74 (1978), 199-207.
  • --------, Closed graph theorem for quadratic spaces, J. London Math. Soc. (2), 22 (1980), 245 -250.
  • C. Piron, Axiomatique quantique, Helv. Phys. Acta 37 (1964), 439-468.
  • --------, On the logic of quantum logic, J. Philos. Logic 6 (1977), 481-484.
  • R. Piziak, An algebraic generalization of Hilbert space geometry, Ph.D. Thesis, Univ. of Massachusetts, 1970.
  • --------, Involution rings and projections, I, J. Natur. Sci. Math., X (1970), 215 -2227.
  • --------, Mackey closure operators, J. London Math. Soc. (2) 4 (1971), 33-38.
  • --------, Sesquilinear forms in infinite dimensions, Pacific J. Math. 43 (1972), 475-481.
  • --------, Orthomodular posets from sesquilinear forms, J. Austral. Math. Soc. XV, (1973), 265 -269.
  • --------, Symplectic orthogonality spaces, J. Combin. Theory 16 (1974), 87-96.
  • --------, Orthomodular lattices as implication algebras, J. Philos. Logic 3 (1974), 413-418.
  • --------, Orthomodular lattices and quantum physics, Math. Mag. 51 (1978), 299-303.
  • --------, Orthogonality preserving transformations on quadratic spaces, Portugal. Math. 43, Fasc. 2, (1985-1986).
  • --------, A note on definite quadratic spaces and Baer orderings, Quaestiones Math., 10 (4), (1987), 317-320.
  • --------, When does ``closed" imply ``splitting?", Technical Report, Baylor University, Nov. 1984.
  • R.J. Plymen, A modification of Piron's axioms, Helv. Phys. Acta 41 (1968), 69-74.
  • --------, $C^*$-algebras and Mackey's axioms, Comm. Math. Phys. 8, (1968), 132-146.
  • J.C.T. Pool, Semimodularity and the logic of quantum mechanics, Comm. Math. Phys. 9 (1968), 212-228.
  • K.R. Popper, Birkhoff and von Neumann's interpretation of quantum mechanics, Nature 219 (1968), 682 -685.
  • A. Ramsay, Dimension theory in an arbitrary complete orthomodular lattice, Trans. Amer. Math. Soc. 116 (1965).
  • C.H. Randall and D.J. Foulis, An approach to empirical logic, Amer. Math. Monthly 77 (1970), 363-374.
  • G.T. Rüttiman, On the logical structure of quantum mechanics, Found. Phys. 1 (1970), 173-182.
  • M. Saarimäki, Counterexamples ot the algebraic closed graph theorem, J. London Math. Soc. (2) 26 (1982), 421-424.
  • U. Sasaki, Orthocomplemented lattices satisfying the exchange axiom, J. Sci. Hiroshima University, 17a (1954), 293-302.
  • E.A. Schreiner, Modular pairs in orthomodular lattices, Pacific J. Math. 19 (1966), 519-528.
  • --------, A note on $O$-symmetric lattices, Caribbean J. Math. 1 (1969), 40-50.
  • P. Sorjonen, Lattice-theoretical characterizations of inner product spaces, Studia Sci. Math. Hungar. 19 (1984), 141-149.
  • D.M. Topping, Asymptoticity and semimodularity in projection lattices, Pacific J. Math. 20 (1967), 317-325.
  • J. von Neumann, Über adjungierte Funktionoperatoren, Ann. of Math. 33 (1932), 294-310.
  • E. Weiss and N. Zierler, Locally compact division rings, Pacific J. Math. 8 (1958), 369-317, MR22#12170.
  • W.J. Wilbur, On characterizing the standard quantum logics, Trans. Amer. Math. Soc. 233 (1977), 265-282.
  • R. Wright, The structure of projection-valued states: A generalization of Wigner's Theorem, Internat. J. Theoret. Phys. 16 (1977), 567-573.
  • N. Zierler, Axioms for nonrelativistic quantum mechanics, Pacific J. Math. 11 (1961), 1151-1169, MR25#4385.
  • --------, Order properties of bounded observables, Proc. Amer. Math. Soc. 14 (1963), 346-351.
  • --------, On the lattice of closed subspaces of Hilbert spaces, Pacific J. Math. 19 (1966), 583-586, MR34#2509.