Rocky Mountain Journal of Mathematics

Some Remarks on Reproducing Kernel Krein Spaces

Daniel Alpay

Full-text: Open access

Article information

Source
Rocky Mountain J. Math., Volume 21, Number 4 (1991), 1189-1205.

Dates
First available in Project Euclid: 5 June 2007

Permanent link to this document
https://projecteuclid.org/euclid.rmjm/1181072903

Digital Object Identifier
doi:10.1216/rmjm/1181072903

Mathematical Reviews number (MathSciNet)
MR1147856

Zentralblatt MATH identifier
0810.46025

Citation

Alpay, Daniel. Some Remarks on Reproducing Kernel Krein Spaces. Rocky Mountain J. Math. 21 (1991), no. 4, 1189--1205. doi:10.1216/rmjm/1181072903. https://projecteuclid.org/euclid.rmjm/1181072903


Export citation

References

  • D. Alpay, Krein spaces of analytic functions and an inverse scattering problem, Michigan Math. J. 34 (1987), 349-359.
  • T. Ando, Reproducing kernel spaces and quadratic inequalities, lecture notes of a course at Hokkaido University, Sapporo, Japan, 1987.
  • N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950), 337-404.
  • J. Ball and J.W. Helton, Shift-invariant subspaces, passivity, reproducing kernels and $H^\infty$ optimisation, in Operator theory: Advances and applications, Volume 35, 1988, Birkhäuser.
  • J. Bognar, Indefinite inner product spaces, Springer, New York, 1974.
  • L. de Branges, Square summable power series, preprint.
  • L. de Branges and L. Schulman, Perturbations of unitary transformations, J. Math. Anal. Appl. 23 (1968), 294-326.
  • P.A. Fillmore and J.P. Williams, On operator ranges, Adv. in Math. 7 (1971), 254-281.
  • I. Gohberg and M.K. Zambickii, On the theory of linear operators in spaces with two norms, Ukrain. Math. J. 18, 11-23; Translation in Amer. Math. So. Transl. (2) 85 (1969), 145-163.
  • L. Schwartz, Sous espaces Hilbertiens d'espaces vectoriels topologiques et noyaux associés (noyaux reproduisants), J. Analyse Math. 13 (1964), 115-256.
  • P. Sorjonen, Pontryagin Räume mit einem reproduzierenden Kern, Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 594 (1973), 1-30.