Rocky Mountain Journal of Mathematics

The Boundary Behavior of the Kobayashi Metric

Steven G. Krantz

Full-text: Open access

Article information

Source
Rocky Mountain J. Math., Volume 22, Number 1 (1992), 227-234.

Dates
First available in Project Euclid: 5 June 2007

Permanent link to this document
https://projecteuclid.org/euclid.rmjm/1181072807

Digital Object Identifier
doi:10.1216/rmjm/1181072807

Mathematical Reviews number (MathSciNet)
MR1159955

Zentralblatt MATH identifier
0760.32010

Citation

Krantz, Steven G. The Boundary Behavior of the Kobayashi Metric. Rocky Mountain J. Math. 22 (1992), no. 1, 227--234. doi:10.1216/rmjm/1181072807. https://projecteuclid.org/euclid.rmjm/1181072807


Export citation

References

  • D. Catlin, Estimates for invariant metrics on pseudoconvex domains of dimension two, Math. Z. 200 (1989), 429-466.
  • D.C. Chang and S. Krantz, Holomorphic Lipschitz functions and applications to estimates for the $\bar\pa$ problem, Colloquium Math., in press.
  • K. Diederich, P. Pflug and J.E. Fornæ ss, Convexity in complex analysis, manuscript.
  • I. Graham, Boundary behavior of the Caratheodory and Kobayashi metrics on strongly pseudoconvex domains in $\c^n$ with smooth boundary, Trans. Amer. Math. Soc. 207 (1975), 219-240.
  • S. Kobayashi, Hyperbolic manifolds and holomorphic mappings, Marcel Dekker, New York, 1970.
  • S. Krantz, Function theory of several complex variables, 2nd ed., Wadsworth, Belmont, 1992.
  • --------, Fatou theorems on domains in $\c^n$, Bull. Amer. Math. Soc. 16 (1987), 93-96.
  • --------, On a theorem of Stein I, Trans. Amer. Math. Soc. 320 (1990), 625-642.
  • --------, Lectures on Hardy spaces in complex domains, University of Umeå,\noindent Lecture Notes, 1987.
  • --------, Invariant metrics and the boundary behavior of holomorphic functions, Journal of Geometric Analysis 1 (1991), 71-98.
  • S. Krantz and Daowei Ma, Bloch functions on strongly pseudoconvex domains, Indiana J. Math., 37 (1988), 145-163.
  • --------, On isometric isomorphisms of the Bloch space in several complex variables, Mich. Math. Journal 36 (1989), 173-180.