Rocky Mountain Journal of Mathematics

A Generalization of a Result of Hurwitz and Mordell on the Torsion Subgroups of Certain Elliptic Curves

Chris Caldwell

Full-text: Open access

Article information

Source
Rocky Mountain J. Math., Volume 22, Number 1 (1992), 93-108.

Dates
First available in Project Euclid: 5 June 2007

Permanent link to this document
https://projecteuclid.org/euclid.rmjm/1181072796

Digital Object Identifier
doi:10.1216/rmjm/1181072796

Mathematical Reviews number (MathSciNet)
MR1159944

Zentralblatt MATH identifier
0756.14022

Citation

Caldwell, Chris. A Generalization of a Result of Hurwitz and Mordell on the Torsion Subgroups of Certain Elliptic Curves. Rocky Mountain J. Math. 22 (1992), no. 1, 93--108. doi:10.1216/rmjm/1181072796. https://projecteuclid.org/euclid.rmjm/1181072796


Export citation

References

  • S. Akhtar, Elliptic curves with points of order three, Punjab Univ. J. Math. 8 (1975), 41-50.
  • E.T. Avanesov, On the equation $Ax^3+By^3+Cz^3=Nxyz$, (Russian) Dokl. BSSR Akad. Nauk. 23 (1978).
  • C. Caldwell, The elliptic curve $aX^3+bY^3+cZ^3=dXYZ$, Thesis, University of California (Berkeley), 1984.
  • A.L. Cauchy, Exercices de Mathematiques, Paris, 1827, 233-270.
  • M. Desbones, Resolution, En Nombres Entires Et Sous Sa Forme Plus General, De L'equation Cubique, Homogene, a Trois Inconnues, Nouv. Ann. de Math. Ser. III 5, 1886.
  • Eric Dofs, On some classes of homogeneous ternary cubic Diophantine equations, Ark. Mat. 13 (1957), 29-72.
  • B.A. Gross, Arithmetic on elliptic curves with complex multiplication, Lecture Notes in Math. 776, Springer-Verlag, New York, 1980.
  • A. Hurwitz, Ueber ternare diophantische Gleichungen dritte Grades, Viertel Jahrschrift Naturf. Ges. Zurich, 1917, 207-229.
  • S. Lang, Elliptic curves: diophantine analysis (Grundlehren der mathematischen Wissenschaften) 231, Springer-Verlag, Berlin, 1978.
  • L.J. Mordell, The diophantine equation $X^3+Y^3+Z^3+kXYZ=0$, Colloque sur la theorie des nombres, Bruxelles, 1955, 67-76.
  • --------, Diophantine equations, Academic Press, Boston, 1969.
  • P. Satge, Une generalization du calcul de Selmer, Seminar on Number Theory, Paris, 1981-82. Progr. Math. 38, Birkhauser, Boston, (1983), 245-265.
  • E.S. Selmer, The diophantine equation $aX^3+bY^3+cZ^3=0$, Acta Math. 85 (1951), 203-362.
  • --------, The diophantine equation $aX^3+bY^3+cZ^3=0$. Completion of the Tables, Acta Math. 92 (1954), 191-197.
  • J.J. Sylvester, Collected Works (1909), vol, 1, 118 (contains many misprints).
  • E. Thomas and A. Vasque, Diophantine equations arising from cubic number fields, J. Number Theory 13 (1981)m, 398-414.