Rocky Mountain Journal of Mathematics

On the Grothendieck and Nikodym Properties of Boolean Algebras

Antonio Aizpuru

Full-text: Open access

Article information

Source
Rocky Mountain J. Math., Volume 22, Number 1 (1992), 1-10.

Dates
First available in Project Euclid: 5 June 2007

Permanent link to this document
https://projecteuclid.org/euclid.rmjm/1181072792

Digital Object Identifier
doi:10.1216/rmjm/1181072792

Mathematical Reviews number (MathSciNet)
MR1159940

Zentralblatt MATH identifier
0755.06008

Citation

Aizpuru, Antonio. On the Grothendieck and Nikodym Properties of Boolean Algebras. Rocky Mountain J. Math. 22 (1992), no. 1, 1--10. doi:10.1216/rmjm/1181072792. https://projecteuclid.org/euclid.rmjm/1181072792


Export citation

References

  • A. Aizpuru, Algebras de Boole cuyos espacios de Stone carecen de sucesiones convergentes distintas de las triviales, Actas de la XII Jornadas Hispano-Lusas de Matemáticas, Braga, Portugal, 1987.
  • F.K. Dashiell, Non Weakly compact operators from order-Cauchy complete $C(S)$ lattices with application to Baire classes, Trans. Amer. Math. Soc. 266 (1981), 397-413.
  • Diestel and Uhl, Measure theory and its applications, Proceedings of a conference held at Serbrooke Québec, Canada, Springer-Verlag, 1984.
  • F.J. Freniche, Teorema de Vitali-Hahn-Saks en álgebras de Boole, Universidad de Sevilla, 1983.
  • W.H. Graves and R.F. Wheeler, On the Grothendieck and Nikodym properties for algebras of Baire, Borel and universally measurable sets, Rocky Mountain J. Mathematics 13 (1983), 333-353.
  • R. Haydon, A non reflexive Grothendieck space that does not contain $1_\infty$, Israel J. Math. 40 (1981), 65-73.
  • K. Kuratowski, Topology, Academic Press, Boston, 1966.
  • J. Van Mill, An introduction to $\b\o$ handbook of set-theoretic topology, North Holland, 1984, 505-567.
  • W. Schachermayer, On some classical measure theoretic theorems for non-sigma-complete Boolean algebras, Linz University, 1978.
  • M. Talagrand, Propieté de Nikodym et propieté de Grothendieck, Studia Math. 68 (1984), 165-171.
  • A. Wilansky, Modern methods in topological vector space, McGraw-Hill, New York, 1978.