Rocky Mountain Journal of Mathematics

Block Type Spaces of Analytic Functions

Kehe Zhu

Full-text: Open access

Article information

Rocky Mountain J. Math., Volume 23, Number 3 (1993), 1143-1177.

First available in Project Euclid: 5 June 2007

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)


Zhu, Kehe. Block Type Spaces of Analytic Functions. Rocky Mountain J. Math. 23 (1993), no. 3, 1143--1177. doi:10.1216/rmjm/1181072549.

Export citation


  • J. Anderson, Bloch functions: The basic theory, Operators and Function Theory, S. Power, editor, D. Reidel, 1985.
  • --------, J. Clunie and Ch. Pommerenke, On Bloch functions and normal functions, J. Reine Angew. Math. 270 (1974), 12-37.
  • J. Arazy, Multipliers of Bloch functions, University of Haifa Mathematics Publication Series 54 (1982).
  • --------, S. Fisher and J. Peetre, Möbius invariant function spaces, J. Reine Angew. Math. 363 (1985), 110-145.
  • S. Axler, The Bergman space, the Bloch space, and commutators of multiplication operators, Duke Math. J. 53 (1986), 315-332.
  • --------, Bergman spaces and their operators, Surveys of some recent results in operator theory (J. Conway and B. Morrel, eds.), Vol. 1, Pitman Res. Notes Math. Ser. 171 (1988), 1-50.
  • -------- and K. Zhu, Boundary behavior of derivatives of analytic functions, Michigan Math. J., 39 (1992), 129-143.
  • L. Brown and A. Shields, Cyclic vectors in the Dirichlet space, Trans. Amer. Math. Soc. 285 (1988), 296-304.
  • P. Duren, Theory of $H^p$ spaces, Academic Press, New York, 1970.
  • --------, B. Romberg and A. Shields, Linear functionals on $H^p$ spaces with $0<p<1$, J. Reine Angew. Math. 238 (1969), 32-60.
  • G. Hardy and J. Littlewood, Some properties of fractional integrals, II, Math. Z. 34 (1932), 403-439.
  • S. Janson, J. Peetre and R. Rochberg, Hankel forms and the Fock space, Revista mat. Ibero-Amer. 3 (1987), 61-138.
  • B. Korenblum, An extension of the Nevanlinna theory, Acta Math. 135 (1975), 187-219.
  • L. Rubel and R. Timoney, An extremal property of the Bloch space, Proc. Amer. Math. Soc. 75 (1979), 45-49.
  • W. Rudin, Function theory in the unit ball of $\c^n$, Springer, New York, 1980.
  • A. Shields and D. Williams, Bounded projections, duality, and multipliers in spaces of analytic functions, Trans. Amer. Math. Soc. 162 (1971), 287-302.
  • K. Zhu, Multipliers of BMO in the Bergman metric with applications to Toeplitz operators, J. Funct. Anal. 87 (1989), 31-50.
  • --------, Operator theory in function spaces, Marcel Dekker, New York, 1990.
  • --------, Duality of Bloch spaces and norm convergence of Taylor series, Michigan Math. J. 38 (1991), 89-101.
  • --------, Distances and Banach spaces of holomorphic functions in complex domains, J. London Math. Soc., to appear.
  • A. Zygmund, Trigonometric series, I, II, second edition, Cambridge Univ. Press, 1968.