Rocky Mountain Journal of Mathematics

Uniqueness of Best Approximation with Coefficient Constraints

Chengmin Yang

Full-text: Open access

Article information

Source
Rocky Mountain J. Math., Volume 23, Number 3 (1993), 1123-1132.

Dates
First available in Project Euclid: 5 June 2007

Permanent link to this document
https://projecteuclid.org/euclid.rmjm/1181072547

Digital Object Identifier
doi:10.1216/rmjm/1181072547

Mathematical Reviews number (MathSciNet)
MR1245470

Zentralblatt MATH identifier
0797.41024

Subjects
Primary: 41A52: Uniqueness of best approximation
Secondary: 41A29: Approximation with constraints 41A50: Best approximation, Chebyshev systems

Keywords
Unique best approximation strong uniqueness coefficient constraints Haar system

Citation

Yang, Chengmin. Uniqueness of Best Approximation with Coefficient Constraints. Rocky Mountain J. Math. 23 (1993), no. 3, 1123--1132. doi:10.1216/rmjm/1181072547. https://projecteuclid.org/euclid.rmjm/1181072547


Export citation

References

  • B.L. Chalmers and G.D. Taylor, Uniform approximation with constraints, Jber. d. Dt. Math.-Verein. 81 (1979), 49-86.
  • E.W. Cheney, Introduction to approximation theory, McGraw-Hill Book Co., New York, 1966.
  • G. Nürnberger, Strong unicity for spline functions, Numer. Funct. Anal. Optim. 5 (1982-83), 319-347.
  • --------, Strong unicity constants in Chebyshev approximation, in Numerical methods of approximation theory, Birkhäuser Verlag, Basel (1986), 145-154.
  • A. Pinkus and H. Strauss, Best approximation with coefficient constraints, IMA J. Numer. Anal. 8 (1988), 1-22.