Rocky Mountain Journal of Mathematics

A Survey on Paracomplex Geometry

V. Cruceanu, P. Fortuny, and P.M. Gadea

Full-text: Open access

Article information

Source
Rocky Mountain J. Math., Volume 26, Number 1 (1996), 83-115.

Dates
First available in Project Euclid: 5 June 2007

Permanent link to this document
https://projecteuclid.org/euclid.rmjm/1181072105

Digital Object Identifier
doi:10.1216/rmjm/1181072105

Mathematical Reviews number (MathSciNet)
MR1386154

Zentralblatt MATH identifier
0856.53049

Citation

Cruceanu, V.; Fortuny, P.; Gadea, P.M. A Survey on Paracomplex Geometry. Rocky Mountain J. Math. 26 (1996), no. 1, 83--115. doi:10.1216/rmjm/1181072105. https://projecteuclid.org/euclid.rmjm/1181072105


Export citation

References

  • F.S. Ahrarov and A.P. Norden, Intrinsic geometry of analytical surfaces in the space of non-degenerate $0$-couples, Izv. Mat. 8 (1978), 19-30 (Russian).
  • C. Allamigeon, Espaces homogènes symétriques à groupe semi-simple, C.R. Acad. Sci. Paris Sér. I Math. 243 (1956), 121-123.
  • F. Amato, CR-sous-variétés co-isotropes inducées dans une $C^\infty$-variété pseudo-riemannienne neutre, Boll. Un. Mat. Ital. A 4 (1985), 433-440.
  • W. Ambrose and I.M. Singer, On homogeneous manifolds, Duke Math. J. 25 (1958), 647-669.
  • G. Arca, Variétés pseudo-riemanniennes structurées par une connexion spin-euclidienne et possédant la propiété de Killing, C.R. Acad. Sci. Paris Sér. I Math. 290 (1980), 839-842.
  • G. Arca, R. Caddeo and R. Rosca, Variétés para-kähleriennes possédant la propriété concirculaire, C.R. Acad. Sci. Paris Sér. I Math. 286 (1978), 1209-1212.
  • C. Bejan, A classification of the almost parahermitian manifolds, Proc. Conference on Diff. Geom. and Appl., Dubrovnik, (1988), 23-27.
  • --------, Almost parahermitian structures on the tangent bundle of an almost paracohermitian manifold, Proc. Fifth Nat. Sem. Finsler and Lagrange spaces, Brasov, (1988), 105-109.
  • --------, Structuri hiperbolice pe diverse spatii fibrate, Ph.D. thesis, Iaşi, 1990.
  • A. Bejancu and T. Otsuki, General Finsler connections on a Finsler vector bundle, Kodai Math. J. 10 (1987), 143-152.
  • M. Berger, Les espaces symétriques non compacts, Bull. Soc. Math. 74 (1957), 85-177.
  • F. Bien, D-modules and spherical representations, Math. Notes 39, Princeton Univ. Press, 1990.
  • É. Cartan, Sur une classe remarquable d'espaces de Riemann, Bull. Soc. Math. 54 (1926), 214-264.
  • S.S. Chern, Einstein hypersurfaces in a Kählerian manifold of constant holomorphic curvature, J. Differential Geometry 1 (1967), 21-31.
  • W.K. Clifford, A preliminary sketch on biquaternions, Proc. London Math. Soc. 4 (1873), 381-395. Reprinted in: Mathematical papers, Chelsea Publ., New York, 1968.%%181-200.
  • --------, On the theory of screws in a space of constant curvature, id., 402-405.
  • --------, On the motion of a body in a elliptic space, 1874, id., 378-384.
  • --------, Further note on biquaternions, id., 385-396.
  • V. Cruceanu, Connexions compatibles avec certaines structures sur un fibré vectoriel banachique, Czechoslovak Math. J. 24 (1974), 126-142.
  • --------, Certaines structures sur le fibré tangent, Proc. Inst. Math. Iaşi, Ed. Acad. Rom. (1976), 41-49.
  • --------, Une structure parakählerienne sur le fibré tangent, Tensor (N.S.) 39 (1982), 81-84.
  • --------, Sur certains morphismes des structures géométriques, Rend. Mat. Appl. 6 (1986), 321-332.
  • --------, Une classe de structures géométriques sur le fibré cotangent, Tensor (N. S.), to appear.
  • A. Crumeyrolle, Variétés différentiables à coordonnées hypercomplexes. Application à une géométrisation et à une généralisation de la théorie d'Einstein-Schrödinger, Ann. Fac. Sci. Toulouse 26 (1962), 105-137.
  • J.E. D'Atri and H.K. Nickerson, The existence of special orthonormal frames, J. Differential Geom. 2 (1968), 393-409.
  • H. Doi, A classification of certain symmetric Lie algebras, Hiroshima Math. J. 11 (1981), 173-180.
  • C. Ehresmann, Sur les variétés presque complexes, Act. Proc. Intern. Cong. Math., (1950), 412-419.
  • M. Flensted-Jensen, Spherical functions on a real semisimple group. A method of reduction to the complex case, J. Funct. Anal. 30 (1978), 106-146.
  • --------, Discrete series for semisimple symmetric spaces, Ann. of Math. 111 (1980), 253-311.
  • H. Freudenthal, Lie groups in the foundations of geometry, Adv. Math. 1 (1970), 145-190.
  • A. Fujimoto, Theory of G-structures, Study Group of Geom., 1972.
  • P.M. Gadea and A. Montesinos Amilibia, Spaces of constant paraholomorphic sectional curvature, Pacific J. Math. 136 (1989), 85-101.
  • --------, The paracomplex projective spaces as symmetric and natural spaces, Indian J. Pure Appl. Math. 23 (1992), 261-275.
  • --------, Totally umbilical pseudo-Riemannian submanifolds of the paracomplex projective space, Czechoslovak Math. J. 44 (1994), 741-756.
  • P.M. Gadea and J. Muñoz Masqué, Classification of almost para-Hermitian manifolds, Rend. Mat. Appl. 11 (1991), 377-396.
  • --------, Classification of homogeneous parakählerian space forms, Nova J. Algebra Geom. 1 (1992), 111-124.
  • P.M. Gadea and J.A. Oubiña, Homogeneous pseudo-Riemannian structures and homogeneous almost para-Hermitian structures, Houston J. Math. 18 (1992), 449-465.
  • V.V. Goldberg and R. Rosca, Biconformal vector fields on manifolds endowed with a certain differential conformal structure, Houston J. Math. 14 (1988), 81-95.
  • J.T. Graves, On a connection between the general theory of normal couples and the theory of complete quadratic functions of two variables, Phil. Magaz., London-Edinburgh-Dublin, 26 (1845), 315-320.
  • A. Gray and L.M. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. 123 (1980), 35-58.
  • J. Hilgert, The hyperboloid as ordered symmetric space, Sem. Sophus Lie 1 (1991), 135-142.
  • J. Hilgert, G. 'Olafsson and B. Ørsted, Hardy spaces associated to symmetric spaces of Hermitian type, Math. Gottingensis, Heft 29, 1989.
  • S. Ianuş and R. Rosca, Variétés para-Kähleriennes structurées par une connexion géodesique, C.R. Acad. Sci. Paris Sér. I Math. 280 (1975), 1621-1623.
  • G. Jensen and M. Rigoli, Neutral surfaces in neutral four-spaces, Matematiche (Catania) 45 (1991), 407-443.
  • M. Kanai, Geodesic flows of negatively curved manifolds with stable and unstable flows, Ergodic Theory Dynamical Systems 8 (1988), 215-239.
  • S. Kaneyuki, On classification of parahermitian symmetric spaces, Tokyo J. Math. 8 (1985), 473-482.
  • --------, On orbit structure of compactifications of parahermitian symmetric spaces, Japan. J. Math. 13 (1987), 333-370.
  • S. Kaneyuki, A decomposition theorem for simple Lie groups associated with parahermitian symmetric spaces, Tokyo J. Math. 10 (1987), 363-373.
  • --------, On a remarkable class of homogeneous symplectic manifolds, Proc. Japan Acad. Math. Sci. 67 (1991), 128-131.
  • --------, Homogeneous symplectic manifolds and dipolarizations in Lie algebras, Tokyo J. Math. 15 (1992), 313-325.
  • --------, On the subalgebras $\frak g_0$ and $\frak g_ev$ of semisimple graded Lie algebras, J. Math. Soc. Japan 45 (1993), 1-19.
  • S. Kaneyuki and H. Asano, Graded Lie algebras and generalized Jordan triple systems, Nagoya Math. J. 112 (1988), 81-115.
  • S. Kaneyuki and M. Kozai, Paracomplex structures and affine symmetric spaces, Tokyo J. Math. 8 (1985), 81-98.
  • --------, On the isotropy group of the automorphism group of a parahermitian symmetric space, Tokyo J. Math. 8 (1985), 483-490.
  • S. Kaneyuki and F. Williams, On a class of quantizable co-adjoint orbits, Algebras Groups Geom. 2 (1985), 70-94.
  • --------, Almost paracontact and parahodge structures on manifolds, Nagoya Math. J. 99 (1985), 173-187.
  • P.F. Kelly and R.B. Mann, Ghost properties of algebraically extended theories of gravitation, Classical Quantum Gravity 3 (1986), 705-712.
  • V.F. Kirichenko, Tangent bundles from the point of view of generalized Hermitian geometry, Izv. Vyssh. Uchebn. Zaved. Mat., Math. 7 (1984), 50-58 (Russian); Soviet Math. (Iz. VUZ) 28 (1984), 63-74 (English).
  • A. Kirillov, Unitary representations of nilpotent groups, Russian Math. Surveys 17 (1962), 53-104.
  • F. Klein, Vergleichende Betrachtungen über neuere geometrische Vorschungen, A. Deichert, Erlangen, 1872.
  • S. Kobayashi and T. Nagano, Filtered Lie algebras and geometric structures, I, J. Math. Mech. 13 (1964), 875-908.
  • S. Kobayashi and K. Nomizu, Foundations of differential geometry, Intersc. Publ., 1963 and 1969.
  • A. Korányi and J.A. Wolf, Realization of Hermitian symmetric spaces as generalized half-planes, Ann. of Math. 81 (1965), 265-288.
  • B. Kostant, Quantization and unitary representations. Part I: Prequantization, Lect. notes in Math., 170, Springer-Verlag, 1970. %87--208.
  • A.P. Kotelnikov, Twist calculus and some of its applications to geometry and mechanics, Kazan, 1895 (Russian).
  • G. Kunstatter and J.W. Moffat, Geometrical interpretation of a generalized theory of gravitation, J. Math. Phys. 24 (1986), 886.
  • P. Libermann, Sur les structures presque paracomplexes, C.R. Acad. Sci. Paris Sér. I Math. 234 (1952), 2517-2519.
  • --------, Sur le problème d'équivalence de certaines structures infinitésimales, Ann. Mat. Pura Appl. (4) 36 (1954), 27-120.
  • R.B. Mann, New ghost-free extensions of general relativity, Classical Quantum Gravity 6 (1989), 41-57.
  • G. Markov and M. Prvanović, $\pi$-holomorphically planar curves and $\pi$-holomorphically projective transformations, Publ. Math. Debrecen, 37 (1990), 273-284.
  • S. Matsumoto, Discrete series for an affine symmetric space, Hiroshima Math. J. 11 (1981), 53-79.
  • O. Mayer, Géométrie biaxiale différentielle des courbes, Bull. Math. Soc. Roum. Sci. 4 (1938), 1-4.
  • --------, Biaxiale Differentialgeometrie der Kurven und Regelflëchen, Anal. Sci. Univ. Jassy 27 (1941), 327-410.
  • O. Mayer, Geometria biaxiala diferentiala a suprafeţelor, Lucr. Ses. Şti. Acad. Rep. Pop. Romàne, 1950, 1-7.
  • R. Miron and G. Atanasiu, Existence et arbitrariété des connexions compatibles à une structure Riemann généralisée du type presque k-horsymplectique métrique, Kodai Math. J. 6 (1983), 228-237.
  • J.W. Moffat, New theory of gravitation, Phys. Rev. 19 (1979), 3554-3558.
  • --------, Nonsymmetric gravitation theory and its experimental consequences, %%Proc. Sir Arthur Eddington cent. Symp., World Sci. Publ., Singapore, 1984.%%, 197-223.
  • --------, Review of the nonsymmetric gravitational theory, Summer Inst. on Gravit., Banff Center, Banff, Alberta, Canada, 1990.
  • G. 'Olafsson, Symmetric spaces of Hermitian type, Differential Geom. Appl. 1 (1991), 195-233.
  • --------, Causal symmetric spaces, Math. Gottingensis, Heft 15, 1990.
  • G. 'Olafsson and B. Ørsted, The holomorphic discrete series for affine symmetric spaces, J. Funct. Anal. 81 (1988), 126-159.
  • G.I. Ol'shanskii, Invariant cones in Lie algebras, Lie semigroups and the holomorphic discrete series, Functional Anal. Appl. 15 (1982), 275-285.
  • Z. Olszak, On conformally flat parakählerian manifolds, Math. Balkanica (N.S.) 5 (1991), 302-307.
  • V. Oproiu, A pseudo-Riemannian structure in Lagrange geometry, An. Ştiinţ. Univ. ``Al. I. Cuza'' Iaşi Secţ. I a Mat. 33 (1987), 239-254.
  • T. Oshima and T. Matsuki, A description of discrete series for semisimple symmetric spaces: Group representations and systems of Differential Equations, Adv. Stud. Pure Math. 4 (1984), 331-390, Kinokuniya, Tokyo and North-Holland, Amsterdam.
  • R.B. Pal and R.S. Mishra, Hypersurfaces of almost hyperbolic Hermite manifolds, Indian J. Pure Appl. Math. 11 (1980), 628-632.
  • D. Papuc, Sur les variétés des espaces kleinéens à groupe linéaire compléte-ment reductible, C. R. Acad. Sci. Paris Sér. I Math. 256 (1963), 62-64; 589-591.
  • E.M. Patterson, Riemann extensions which have Kähler metrics, Proc. Roy. Soc. Edinburgh Sect. A 64 (1954), 113-126.
  • --------, Symmetric Kähler spaces, J. London Math. Soc. 30 (1955), 286-291.
  • --------, A characterization of Kähler manifolds in terms of parallel fields of planes, J. London Math. Soc. 28 (1958), 260-269.
  • M. Prvanović, Holomorphically projective transformations in a locally product space, Math. Balkanica 1 (1971), 195-213.
  • P.K. Rashevskij, The scalar field in a stratified space, Trudy Sem. Vektor. Tenzor. Anal. 6 (1948), 225-248.
  • R. Rosca, Variétés pseudo-riemanniennes $V^n,n$ de signature $(n,n)$ et à connexion self-orthogonale involutive, C. R. Acad. Sci. Paris Sér. I Math. 280 (1974), 959-961.
  • --------, Quantic manifolds with para-co-Kählerian structures, Kodai Math. Sem. Rep. 27 (1976), 51-61.
  • --------, Para-Kählerian manifolds carrying a pair of concurrent self-ortho-gonal vector fields, Abh. Math. Sem. Univ. Hamburg 46 (1977), 205-215.
  • --------, Espace-temps possédant la propriété géodésique, C.R. Acad. Sci. Paris Sér. I Math. 285 (1977), 305-308.
  • --------, Sous-variétés anti-invariantes d'une variété parakählerienne structurée par une connexion géodesique, C.R. Acad. Sci. Paris Sér. I Math. 287 (1978), 539-541.
  • --------, CR-hypersurfaces à champ normal covariant décomposable incluses dans une variété pseudo-riemannienne neutre, C.R. Acad. Sci. Paris Sér. I Math. 292 (1981), 287-290.
  • --------, CR-sous-variétés co-isotropes d'une variété parakählerienne, C.R. Acad. Sci. Paris Sér. I Math. 298 (1984), 149-151.
  • --------, Variétés neutres M admettant une structure conforme symplectique et feuilletage coisotrope, C.R. Acad. Sci. Paris Sér. I Math. 300 (1985), 631-634.
  • R. Rosca and L. Vanhecke, Les sous-variétés isotropes et pseudo-isotropes d'une variété hyperbolique à n dimensions, Verh. Konink. Acad. Wetensch. België 38 (1976), 136.
  • W. Rossmann, The structure of semisimple symmetric spaces, Canad. J. Math. 31 (1979), 157-180.
  • B.A. Rozenfeld, History of non-Euclidean geometries, Springer-Verlag, 1988.
  • --------, On unitary and stratified spaces, Trudy Sem. Vektor. Tenzor. Anal. 7 (1949), 260-275 (Russian).
  • B.A. Rozenfeld, Projective geometry as metric geometry, Trudy Sem. Vektor. Tenzor. Anal. 8 (1950), 328-354 (Russian).
  • --------, Non-Euclidean geometries over the complex and the hypercomplex numbers and their application to real geometries, in 125 years of Lobatchevski non-Euclidean geometry, Moskow-Leningrad, 1952, 151-156.
  • --------, Non-Euclidean geometries, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moskow, 1955 (Russian).
  • B.A. Rozenfeld, N.V. Dushina and I.N. Semenova, Differential geometry of real $2$-surfaces in dual Hermitian Euclidean and elliptic spaces, Trudy Geom. Sem. Kazan. Univ. 19 (1989), 107-120 (Russian).
  • H.S. Ruse, On parallel fields of planes in a Riemannian manifold, Quart. J. Math. Oxford Ser. 20 (1949), 218-234.
  • N. Salingaros, Algebras with three anticommuting elements. (II) Two algebras over a singular field, J. Math. Phys. 22 (1981), 2096-2100.
  • E. Study, The geometry of dynames, Leipzig, 1903.
  • M. Takeuchi, Cell decompositions and Morse equalities on certain symmetric spaces, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 12 (1965), 81-191.
  • --------, Stability of certain minimal submanifolds of compact Hermitian symmetric spaces, Tôhoku Math. J. 36 (1984), 293-314.
  • I. Vaisman, On locally conformal almost Kähler manifolds, Israel J. Math. 24 (1976), 338-351.
  • V.V. Vyshnevskij, A.P. Shirokov and V.V. Shurygin, Spaces over algebras, Kazan Univ., 1985 (Russian).
  • J.A. Wolf, Spaces of constant curvature, Publish or Perish, 1977.
  • Y.C. Wong, Fields of parallel planes in affinely connected spaces, Quart. J. Math. Oxford 4 (1953), 241-253.
  • I.M. Yaglom, A simple non-Euclidean geometry and its physical basis, Springer-Verlag, Berlin-New York, 1979.
  • K. Yano and S. Ishihara, Tangent and cotangent bundles, Marcel Dekker, New York, 1973.
  • Z.-Z. Zhong, On the hyperbolic complex linear symmetry groups and their local gauge transformation actions, J. Math. Phys. 26 (1985), 404-406.