Rocky Mountain Journal of Mathematics

Fourier Analysis on Coset Spaces

Brian Forrest

Full-text: Open access

Article information

Source
Rocky Mountain J. Math., Volume 28, Number 1 (1998), 173-190.

Dates
First available in Project Euclid: 5 June 2007

Permanent link to this document
https://projecteuclid.org/euclid.rmjm/1181071828

Digital Object Identifier
doi:10.1216/rmjm/1181071828

Mathematical Reviews number (MathSciNet)
MR1639849

Zentralblatt MATH identifier
0922.43007

Subjects
Primary: 43A85: Analysis on homogeneous spaces
Secondary: 43A07: Means on groups, semigroups, etc.; amenable groups 43A15: $L^p$-spaces and other function spaces on groups, semigroups, etc.

Keywords
Locally compact group cosets Fourier algebra amenable group

Citation

Forrest, Brian. Fourier Analysis on Coset Spaces. Rocky Mountain J. Math. 28 (1998), no. 1, 173--190. doi:10.1216/rmjm/1181071828. https://projecteuclid.org/euclid.rmjm/1181071828


Export citation

References

  • G. Arsac, Sur l'espace de Banach engendré par les coefficients d'une représenta- tion unitaire, Publ. Dép. Math., Lyon 13 (1976), 1-101.
  • W.G. Bade and P.C. Curtis, The continuity of derivations of Banach algebras, J. Funct. Anal. 16 (1974), 372-387.
  • M.E.B. Bekka, A.T. Lau and G. Schlichting, On invariant subalgebras of the Fourier-Stieltjes algebra of a locally compact group, Math. Ann. 294 (1992), 513-522.
  • M. Cowling and P. Rodway, Restrictions of certain function spaces to closed subgroups of locally compact groups, Pacific J. Math. 80 (1979), 91-104.
  • H. Dales and G. Willis, Cofinite ideals in Banach algebras and finite dimensional representations of group algebras, Lecture Notes in Math. 975 (1982), 397-407.
  • P. Eymard, L'algèbre de Fourier d'un groupe localement compact., Bull. Soc. Math. France 92 (1964), 181-236.
  • --------, Moyennes Invariantes et Représentations Unitaires., Lecture Notes in Math 300 (1972), ii + 113 pp.
  • H.G. Feichtinger, C.G. Graham and E.H. Lakien, Partial converses to the Cohen factorization theorem and applications to Segal algebras,
  • B. Forrest, Amenability and derivations of the Fourier algebra, Proc. Amer. Math. Soc. 104 (1988), 437-442.
  • --------, Amenability and ideals in $A(G)$, J. Austral. Math. Soc., Ser. A 53 (1992), 143-155.
  • --------, Amenability and bounded approximate identities in ideals of $A(G)$, Illinois J. Math. 34 (1990), 1-25.
  • N. Grøbaek, A characterization of weakly amenable Banach algebras, Studia Math. 94 (1989), 149-162.
  • C. Herz, Harmonic synthesis for subgroups, Ann. Inst. Fourier (Grenoble) 23 (1973), 91-123.
  • E. Hewitt and K.A. Ross, Abstract harmonic analysis, Vol. II, Springer-Verlag, New York, 1970.
  • N.P. Jewell, Continuity of module and higher derivatives, Pacific J. Math. 68 (1977), 91-98.
  • B. Johnson, Nonamenability of the Fourier algebra for compact groups, J. London Math. Soc. 50 (1994), 361-374.
  • N. Lohoué, Remarques sur les ensembles de synthèse des algèbres de groupe localement compact, J. Functional Analysis, 13 (1973), 185-194.
  • V. Losert, Properties of the Fourier algebra that are equivalent to amenability, Proc. Amer. Math. Soc. 92 (1984), 347-354.
  • P. Malliavin, Impossibilité de la synthèse spectrale sur les groupes abéliens non compacts, Publications Mathématiques de l'Institut Hautes Études Scientifiques Paris 2 (1959), 61-68.
  • P. Nouyrigat, Sur le prédual de l'algèbre de Von Neumann associée à unie représentation unitaire d'un groupe, These, L'Université Claude-Bernard, Lyon-1, 1972.
  • K. Parthasarathy and S. Varma, On weak spectral synthesis, Bull. Austral. Math. Soc. 43 (1991), 279-282.
  • J.P. Pier, Amenable locally compact groups, Wiley, New York, 1984.
  • M. Skantharajah, Amenable actions of locally compact groups on coset spaces, thesis, University of Alberta, 1985.
  • M. Takesaki and N. Tatsuuma, Duality and subgroups, Ann. Math. 93 (1971), 344-364.