Rocky Mountain Journal of Mathematics

Multiplicity of Positive Solutions for Higher Order Sturm-Liouville Problems

John M. Davis, Lynn H. Erbe, and Johnny Henderson

Full-text: Open access

Article information

Source
Rocky Mountain J. Math., Volume 31, Number 1 (2001), 169-184.

Dates
First available in Project Euclid: 5 June 2007

Permanent link to this document
https://projecteuclid.org/euclid.rmjm/1181070246

Digital Object Identifier
doi:10.1216/rmjm/1008959675

Mathematical Reviews number (MathSciNet)
MR1821375

Zentralblatt MATH identifier
0989.34012

Subjects
Primary: 34B10: Nonlocal and multipoint boundary value problems
Secondary: 34B15: Nonlinear boundary value problems 35J25: Boundary value problems for second-order elliptic equations 35P30: Nonlinear eigenvalue problems, nonlinear spectral theory

Keywords
Multiple solutions positive solutions Sturm-Liouville problem cone theory

Citation

Davis, John M.; Erbe, Lynn H.; Henderson, Johnny. Multiplicity of Positive Solutions for Higher Order Sturm-Liouville Problems. Rocky Mountain J. Math. 31 (2001), no. 1, 169--184. doi:10.1216/rmjm/1008959675. https://projecteuclid.org/euclid.rmjm/1181070246


Export citation

References

  • J.M. Davis and J. Henderson, Triple positive symmetric solutions for a Lidstone boundary value problem, Differential Equations Dynam. Syst. 7 (1999), 321-330.
  • K. Deimling, Nonlinear functional analysis, Springer-Verlag, New York, 1985.
  • L.H. Erbe and S. Hu, Nonlinear boundary value problems, in Comparison methods and stability theory, Marcel Dekker, New York, 1994.
  • L.H. Erbe, S. Hu, and H. Wang, Multiple positive solutions of some boundary value problems, J. Math. Anal. Appl. 184 (1994), 640-648.
  • L.H. Erbe and M. Tang, Existence and multiplicity of positive solutions to nonlinear boundary value problems, Differential Equations Dynam. Syst. 4 (1996), 313-320.
  • --------, Positive radial solutions to nonlinear boundary value problems for semilinear elliptic problems, in Differential equations and control theory, Marcel-Dekker, New York, 1995.
  • L.H. Erbe and H. Wang, Existence and nonexistence of positive solutions for elliptic equations in an annulus, World Sci. Ser. Appl. Anal. 3 (1994), 207-217.
  • --------, On the existence of positive solutions of ordinary differential equations, Proc. Amer. Math. Soc. 120 (1994), 743-748.
  • R. Leggett and L. Williams, Multiple positive fixed points of nonlinear operators on ordered Banach spaces, Indiana Univ. Math. J. 28 (1979), 673-688.
  • W.C. Lian, F.H. Wong, and C.C. Yeh, On the existence of positive solutions of nonlinear second order differential equations, Proc. Amer. Math. Soc. 124 (1996), 1111-1126.
  • H. Wang, On the existence of positive solutions for semilinear elliptic equations in the annulus, J. Differential Equations 109 (1994), 1-7.