Rocky Mountain Journal of Mathematics

On Infinite Tensor Products of Projective Unitary Representations

Erik Bédos and Roberto Conti

Full-text: Open access

Article information

Rocky Mountain J. Math., Volume 34, Number 2 (2004), 467-493.

First available in Project Euclid: 5 June 2007

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 22D10: Unitary representations of locally compact groups
Secondary: 22D25: $C^*$-algebras and $W^*$-algebras in relation to group representations [See also 46Lxx] 46L55: Noncommutative dynamical systems [See also 28Dxx, 37Kxx, 37Lxx, 54H20] 43A07: Means on groups, semigroups, etc.; amenable groups 43A65: Representations of groups, semigroups, etc. [See also 22A10, 22A20, 22Dxx, 22E45]

Projective unitary representation infinite tensor product amenable group


Bédos, Erik; Conti, Roberto. On Infinite Tensor Products of Projective Unitary Representations. Rocky Mountain J. Math. 34 (2004), no. 2, 467--493. doi:10.1216/rmjm/1181069863.

Export citation


  • M. Aita, W. Bergmann and R. Conti, Amenable groups and generalized Cuntz algebras, J. Funct. Anal. 150 (1997), 48-64.
  • N.B. Backhouse, Projective representations of space groups, II: Factor systems, Quart. J. Math. Oxford Ser. 2 21 (1970), 223-242.
  • N.B. Backhouse and C.J. Bradley, Projective representations of space groups, I: Translation groups, Quart. J. Math. Oxford Ser. 2 21 (1970), 203-222.
  • W. Bergmann and R. Conti, Asymptotic invariance, amenability and generalized Cuntz algebras, Ergodic Theory Dynamical Systems 23, (2003), 1323-1346.
  • K.S. Brown, Cohomology of groups, GTM in Mathematics '87, Springer-Verlag, New-York, 1982.
  • A. Connes, Une classification des facteurs de type III, Ann. Sci. École Norm. Sup. 6 (1973), 133-252.
  • R. Conti, Amenability and infinite tensor products, in Operator theory, operator algebras and related topics, Proc. 16th Internat. Conf. on Operator Theory, Timisoara 1996, The Theta Foundation, Bucharest, 1997.
  • J. Dixmier, Les $C^*$-algebres et leurs representations, Gauthiers-Villars, Paris, 1969.
  • G.A. Elliott, Finite projections in tensor products of von Neumann algebras, Trans. Amer. Math. Soc. 212 (1975), 47-60.
  • D.E. Evans and Y. Kawahigashi, Quantum symmetries on operator algebras, Oxford Univ. Press, Oxford, 1998.
  • A. Guichardet, Produits tensoriels infinis et représentations des relations d'anticommutation, Ann. Sci. École Norm. Sup. 3 (1966), 1-52.
  • --------, Tensor product of $C^*$-algebras, I and II, Lecture Notes Ser. 12,13, Aarhus Univ., Aarhus, 1969.
  • T. Hirai and H. Shimomura, Relations between unitary representations of diffeomorphism groups and those of the infinite symmetric group or of related permutation groups, J. Math. Kyoto Univ. 37 (1997), 261-316.
  • R.R. Kallman, A generalization of free action, Duke Math. J. 36 (1969), 781-789.
  • A. Kleppner, The structure of some induced representations, Duke Math. J. 29 (1962), 555-572.
  • --------, Multipliers on Abelian groups, Math. Ann. 158 (1965), 11-34.
  • A. Paterson, Amenability, Math. Surveys Monographs, vol. 29, Amer. Math. Soc., Providence, 1988.
  • J.P. Pier, Amenable locally compact groups, John Wiley & Sons Inc., New York, 1984.
  • J. Slawny, On factor representations and the C*-algebra of canonical commutation relations, Comm. Math. Phys. 24 (1972), 151-170.
  • S. Strătilă and L. Zsidó, Lectures on von Neumann algebras, Abacus Press, Tunbridge Wells, Kent, 1979.
  • E. Størmer, On infinite tensor products of von Neumann algebras, Amer. J. Math. 93 (1971), 810-818.
  • J. von Neumann, On infinite direct products, Compositio Math. 6 (1938), 1-77.