Rocky Mountain Journal of Mathematics

Bounds for the Faber Coefficients of Certain Classes of Functions Analytic in an Ellipse

E. Haliloglu and E.H. Johnston

Full-text: Open access

Article information

Source
Rocky Mountain J. Math., Volume 35, Number 1 (2005), 167-179.

Dates
First available in Project Euclid: 5 June 2007

Permanent link to this document
https://projecteuclid.org/euclid.rmjm/1181069774

Digital Object Identifier
doi:10.1216/rmjm/1181069774

Mathematical Reviews number (MathSciNet)
MR2117601

Zentralblatt MATH identifier
1075.30006

Subjects
Primary: 30C45: Special classes of univalent and multivalent functions (starlike, convex, bounded rotation, etc.)
Secondary: 33C45: Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.) [See also 42C05 for general orthogonal polynomials and functions]

Keywords
Faber polynomials Faber coefficients Jacobi elliptic sine function

Citation

Haliloglu, E.; Johnston, E.H. Bounds for the Faber Coefficients of Certain Classes of Functions Analytic in an Ellipse. Rocky Mountain J. Math. 35 (2005), no. 1, 167--179. doi:10.1216/rmjm/1181069774. https://projecteuclid.org/euclid.rmjm/1181069774


Export citation

References

  • M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover Publ., Inc., New York, 1972.
  • L. Bieberbach, Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln, S.-B. Preuss. Akad. Wiss. (1916), 940-955.
  • L. de Branges, A proof of the Bieberbach conjecture, Acta Math. 154 (1985), 137-152.
  • C. Carathéodory, Über den Variabilitä% tsbereich der Koeffizienten von Pontenzreihen, die gegebene Werte nicht annehmen, Math. Ann. 64 (1907), 95-115.
  • P.L. Duren, Univalent functions, Springer-Verlag, New York, 1983.
  • E. Halilo\uglu, On the Faber coefficients of functions univalent in an ellipse, Trans. Amer. Math. Soc. 349 (1997), 2901-2916.
  • --------, Generalizations of coefficient estimates for certain classes of analytic functions, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), 116-121.
  • D.F. Lawden, Elliptic functions and applications, Springer-Verlag, New York, 1989.
  • K. Loewner, Untersuchungen über die Verzerrung bei konformen Abbildungen des Einheitskreises $|z|<1$, die durch Funktionen mit nichtverschwindender Ableitung geliefert werden, S.-B. Sächs. Akad. Wiss. 69 (1917), 89-106.
  • Z. Nehari, Conformal mapping, McGraw-Hill, New York, 1952.
  • W. C. Royster, Coefficient problems for functions regular in an ellipse, Duke Math. J. 26 (1959), 361-371.
  • G. Schober, Univalent functions - Selected topics, Lecture Notes in Math.,vol. 478 -1975.