Rocky Mountain Journal of Mathematics

Sums of Sixteen and Twenty-Four Triangular Numbers

James G. Huard and Kenneth S. Williams

Full-text: Open access

Article information

Rocky Mountain J. Math., Volume 35, Number 3 (2005), 857-868.

First available in Project Euclid: 5 June 2007

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 11E25: Sums of squares and representations by other particular quadratic forms

Triangular numbers


Huard, James G.; Williams, Kenneth S. Sums of Sixteen and Twenty-Four Triangular Numbers. Rocky Mountain J. Math. 35 (2005), no. 3, 857--868. doi:10.1216/rmjm/1181069710.

Export citation


  • J.W.L. Glaisher, Expressions for the first five powers of the series in which the coefficients are the sums of the divisors of the exponents, Mess. Math. 15 (1885), 33-36.
  • J.G. Huard, Z.M. Ou, B.K. Spearman and K.S. Williams, Elementary evaluation of certain convolution sums involving divisor functions, in Number Theory for the Millennium, II (Urbana, IL, 2000) (M.A. Bennett et al., eds.), A.K. Peters, Natick, MA, 2002, pp. 229-274.
  • V.G. Kac and M. Wakimoto, Integrable highest weight modules over affine superalgebras and number theory, in Lie theory and geometry, Progr. Math., vol. 123, Birkhäuser Boston, Boston, MA, 1994, pp. 415-456.
  • D.B. Lahiri, On Ramanujan's function $\tau(n)$ and the divisor function $\sigma_k(n)$-II, Bull. Calcutta Math. Soc. 39 (1947), 33-52.
  • S. Ramanujan, On certain arithmetical functions, Trans. Cambridge Philos. Soc. 22 (1916), 159-184.