Rocky Mountain Journal of Mathematics

Weakly Krull and Related Domains of the Form $D\!+\!M$, $A\!+\!XB[X]$ AND $A\!+\!X^2B[X]$

David F. Anderson, Gyu Whan Chang, and Jeanam Park

Full-text: Open access

Article information

Source
Rocky Mountain J. Math., Volume 36, Number 1 (2006), 1-22.

Dates
First available in Project Euclid: 5 June 2007

Permanent link to this document
https://projecteuclid.org/euclid.rmjm/1181069485

Digital Object Identifier
doi:10.1216/rmjm/1181069485

Mathematical Reviews number (MathSciNet)
MR2228181

Zentralblatt MATH identifier
1133.13022

Subjects
Primary: 13A15: Ideals; multiplicative ideal theory 13B25: Polynomials over commutative rings [See also 11C08, 11T06, 13F20, 13M10] 13G05: Integral domains

Citation

Anderson, David F.; Chang, Gyu Whan; Park, Jeanam. Weakly Krull and Related Domains of the Form $D\!+\!M$, $A\!+\!XB[X]$ AND $A\!+\!X^2B[X]$. Rocky Mountain J. Math. 36 (2006), no. 1, 1--22. doi:10.1216/rmjm/1181069485. https://projecteuclid.org/euclid.rmjm/1181069485


Export citation

References

  • D.F. Anderson, The class group and local class group of an integral domain, in Non-Noetherian ring theory, Math. Appl., Kluwer Acad. Publ., Dordrecht, 2000, pp. 33-55.
  • D.D. Anderson, D.F. Anderson and M. Zafrullah, Rings between $D[X]$ and $K[X]$, Houston J. Math. 17 (1991), 109-129.
  • D.F. Anderson, S.E. Baghdadi and S. Kabbaj, On the class group of $A+XB[X]$ domains, Lecture Notes in Pure and Appl. Math., vol. 205, Dekker, New York, 1999, pp. 73-85.
  • --------, The homogeneous class group of $A+XB[X]$ domains, Internat. J. Commutative Rings 1 (2002), 11-25.
  • D.F. Anderson, G.W. Chang and J. Park, Generalized weakly factorial domains, Houston J. Math. 29 (2003), 1-13.
  • --------, $D[X^2, X^3]$ over an integral domain $D$, Lecture Notes in Pure and Appl. Math., vol. 231, Dekker, New York, 2003, pp. 1-14.
  • D.D. Anderson, E. Houston and M. Zafrullah, $t$-linked extensions, the $t$-class group, and Nagata's theorem, J. Pure Appl. Algebra 86 (1993), 109-124.
  • D.D. Anderson and L.A. Mahaney, On primary factorization, J. Pure Appl. Algebra 54 (1988), 141-154.
  • D.D. Anderson, J. Mott and M. Zafrullah, Finite character representations for integral domains, Boll. Un. Mat. Ital. 6 (1992), 613-630.
  • D.F. Anderson and A. Ryckaert, The class group of $D+M$, J. Pure Appl. Algebra 52 (1988), 199-212.
  • D.D. Anderson and M. Zafrullah, Weakly factorial domains and groups of divisibility, Proc. Amer. Math. Soc. 109 (1990), 907-913.
  • --------, Almost Bezout domains, J. Algebra 142 (1991), 285-309.
  • E. Bastida and R. Gilmer, Overrings and divisorial ideals of the form $D+M$, Michigan Math. J. 20 (1973), 79-95.
  • A. Bouvier and M. Zafrullah, On some class groups of an integral domain, Bull. Soc. Math. Gréce (N.S.) 29 (1988), 45-59.
  • J. Brewer and E. Rutter, $D+M$ constructions with general overrings, Michigan Math. J. 23 (1976), 33-42.
  • R. Gilmer, Multiplicative ideal theory, Marcel Dekker, New York, 1972.
  • E. Houston and M. Zafrullah, On $t$-invertibility, II, Comm. Algebra 17 (1989), 1955-1969.
  • H.C. Hutchins, Examples of commutative rings, Polygonal Publishing House, Passaic, NJ, 1981.
  • B.G. Kang, Prüfer $v$-multiplication domains and the ring $R[X]_N_v$, J. Algebra 123 (1989), 151-170.
  • I. Kaplansky, Commutative rings, rev. ed., Univ. of Chicago Press, Chicago, 1974.
  • T.Y. Lam, Lectures on modules and rings, Springer, New York, 1999.
  • T.G. Lucas, Examples built with $D+M, A+XB[X]$, and other pullback constructions, in Non-Noetherian ring theory, Math. Appl., Kluwer Acad. Publ., Dordrecht, 2000, pp. 341-368.
  • M. Zafrullah, A general theory of almost factoriality, Manuscripta Math. 51 (1985), 29-62.
  • --------, Putting $t$-invertibility to use, in Non-Noetherian ring theory, Math. Appl., Kluwer Acad. Publ., Dordrecht, 2000, pp. 429-457.
  • --------, Facets of Rings between $D[X]$ and $K[X]$, Lecture Notes in Pure and Appl. Math., vol. 231, Dekker, New York, 2003, pp. 445-460.