Revista Matemática Iberoamericana

Lowest uniformizations of closed Riemann orbifolds

Rubén A. Hidalgo

Full-text: Open access

Abstract

A Kleinian group containing a Schottky group as a finite index subgroup is called a Schottky extension group. If $\Omega$ is the region of discontinuity of a Schottky extension group $K$, then the quotient $\Omega/K$ is a closed Riemann orbifold; called a Schottky orbifold. Closed Riemann surfaces are examples of Schottky orbifolds as a consequence of the Retrosection Theorem. Necessary and sufficient conditions for a Riemann orbifold to be a Schottky orbifold are due to M. Reni and B. Zimmermann in terms of the signature of the orbifold. It is well known that the lowest uniformizations of a closed Riemann surface are exactly those for which the Deck group is a Schottky group. In this paper we extend such a result to the class of Schottky orbifolds, that is, we prove that the lowest uniformizations of a Schottky orbifold are exactly those for which the Deck group is a Schottky extension group.

Article information

Source
Rev. Mat. Iberoamericana, Volume 26, Number 2 (2010), 639-649.

Dates
First available in Project Euclid: 4 June 2010

Permanent link to this document
https://projecteuclid.org/euclid.rmi/1275671314

Mathematical Reviews number (MathSciNet)
MR2677010

Zentralblatt MATH identifier
1214.30028

Subjects
Primary: 30F10: Compact Riemann surfaces and uniformization [See also 14H15, 32G15] 30F40: Kleinian groups [See also 20H10]

Keywords
orbifolds Schottky groups Kleinian groups

Citation

Hidalgo, Rubén A. Lowest uniformizations of closed Riemann orbifolds. Rev. Mat. Iberoamericana 26 (2010), no. 2, 639--649. https://projecteuclid.org/euclid.rmi/1275671314


Export citation

References

  • Ahlfors, L.: Finitely generated Kleinian groups. Amer. J. Math. 86 (1964), 413-429. Correction ibid 87 (1965), 759.
  • Ahlfors, L. and Sario, L.: Riemann Surfaces. Princeton Mathematical Series 26. Princeton University Press, Princeton, NJ, 1960.
  • Alperin, R.C.: An elementary account of Selberg's lemma. Enseign. Math. (2) 33 (1987), no. 3-4, 269-273.
  • Bers, L.: Automorphic forms for Schottky groups. Advances in Math. 16 (1975), 332-361.
  • Hidalgo, R.A.: Automorphisms groups of Schottky type. Ann. Acad. Sci. Fenn. Math. 30 (2005), no. 1, 183-204.
  • Koebe, P.: Über die Uniformisierung der algebraischen Kurven II. Math. Ann. 69 (1910), no. 1, 1-81.
  • Kra, I.: Deformations of Fuchsian groups, II. Duke Math. J. 38 (1971), 499-508.
  • Maskit, B.: A characterization of Schottky groups. J. Analyse Math. 19 (1967), 227-230.
  • Maskit, B.: A theorem on planar covering surfaces with applications to 3-manifolds. Ann. of Math. (2) 81 (1965), 341-355.
  • Maskit, B.: Kleinian groups. Grundlehren der Mathematischen Wissenschaften 287. Springer-Verlag, Berlin, 1988.
  • Maskit, B.: Canonical domains on Riemann surfaces. Proc. Amer. Math. Soc. 106 (1989), no. 3, 713-721.
  • Matsuzaki, K. and Taniguchi, M.: Hyperbolic manifolds and Kleinian groups. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1998.
  • Poincaré, H.: Sur l'uniformisation des fonctions analytiques. Acta Math. 31 (1908), no. 1, 1-64.
  • Reni, M. and Zimmermann, B.: Handlebody orbifolds and Schottky uniformizations of hyperbolic 2-orbifolds. Proc. Amer. Math. Soc. 123 (1995), no. 12, 3907-3914.
  • Selberg, A.: On discontinuous groups in higher-dimensional symmetric spaces. In Contributions to function theory, 147-164. Tata Institute of Fundamental Research, Bombay, 1960.
  • Thurston, W.P.: The geometry and topology of 3-manifolds. Mimeographed notes. Princeton, 1979.