Revista Matemática Iberoamericana

Cyclic Blaschke products for composition operators

Eva A. Gallardo-Gutiérrez and Pamela Gorkin

Full-text: Open access

Abstract

In this work, cyclic Blaschke products for composition operators induced by disc automorphisms are studied. In particular, we obtain interpolating Blaschke products that are cyclic for nonelliptic automorphisms and we obtain a new characterization of Blaschke products that are not finite products of interpolating Blaschke products.

Article information

Source
Rev. Mat. Iberoamericana, Volume 25, Number 2 (2009), 447-470.

Dates
First available in Project Euclid: 13 October 2009

Permanent link to this document
https://projecteuclid.org/euclid.rmi/1255440064

Mathematical Reviews number (MathSciNet)
MR2554162

Zentralblatt MATH identifier
1177.47015

Subjects
Primary: 47B38: Operators on function spaces (general)

Keywords
composition operator cyclic vectors Blaschke products

Citation

Gallardo-Gutiérrez, Eva A.; Gorkin, Pamela. Cyclic Blaschke products for composition operators. Rev. Mat. Iberoamericana 25 (2009), no. 2, 447--470. https://projecteuclid.org/euclid.rmi/1255440064


Export citation

References

  • Ahlfors, L.V.: Complex Analysis. International Series in Pure and Applied Mathematics. Mc Graw-Hill Book Co., New York, 1978.
  • Axler, S. and Gorkin, P.: Divisibility in Douglas algebras. Michigan Math. J. 31 (1984), no. 1, 89-94.
  • Bayart, F. and Gorkin, P.: How to get universal inner functions. Math. Ann. 337 (2007), no. 4, 875-886.
  • Bourdon, P. and Shapiro, J.H.: Cyclic phenomena for composition operators. Mem. Amer. Math. Soc. 125 (1997), no. 596.
  • Chalendar, I. and Esterle, J.: Le probléme du sous-espace invariant. In Development of mathematics 1950-2000, 235-267. Birkhäuser, Basel, 2000.
  • Cowen, C.C. and MacCluer, B.D.: Composition Operators on Spaces of Analytic Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1995.
  • Diestel, J.: Sequences and series in Banach spaces. Graduate Texts in Mathematics 92. Springer-Verlag, New York, 1984.
  • Douglas, R.: Banach algebra techniques in operator theory. Pure and Applied Mathematics 49. Academic Press, New York-London, 1972.
  • Duren, P.L.: Theory of $\mathcalH^p$ spaces. Pure and Applied Mathematics 38. Academic Press, New York-London, 1970.
  • Dyakonov, K. and Nicolau, A.: Free interpolation by nonvanishing analytic functions. Trans. Amer. Math. Soc. 359 (2007), no. 9, 4449-4465.
  • Earl, J.P.: On the interpolation of bounded sequences by bounded functions. J. London Math. Soc. (2) 2 (1970), 544-548.
  • Gallardo-Gutiérrez, E.A. and Montes-Rodríguez, A.: The role of the spectrum in the cyclic behavior of composition operators. Mem. Amer. Math. Soc. 167 (2004), no. 791.
  • Garnett, J.B.: Bounded Analytic Functions. Pure and Applied Mathematics 96. Academic Press Inc., New York-London, 1981.
  • Gauthier, P. and Xiao, J.: The existence of universal inner functions on the unit ball of $\mathbbC^n$. Canad. Math. Bull. 48 (2005), no. 3, 409-413.
  • Gorkin, P. and Mortini, R.: Universal Blaschke products. Math. Proc. Cambridge Philos. Soc. 136 (2004), no. 1, 175-184.
  • Grosse-Erdmann, K.-G.: Universal families and hypercyclic operators. Bull. Amer. Math. Soc. (N.S.) 36 (1999), no. 3, 345-381.
  • Grosse-Erdmann, K.-G.: Recent developments in hypercyclicity. In In Seminar of Mathematical Analysis (Malaga/Seville, 2002/2003), 157-175. Colecc. Abierta 64. Univ. Sevilla Secr. Publ., Seville, 2003.
  • Hjelle, G.A. and Nicolau, A.: Approximating the modulus of an inner function. Pacific J. Math. 228 (2006), no. 1, 103-118.
  • Guillory, C. and Sarason, D.: Division in $H\sp\infty + \mathcalC$. Michigan Math. J. 28 (1981), no. 2, 173-181.
  • Guillory, C., Izuchi, K. and Sarason, D.: Interpolating Blaschke products and division in Douglas algebras. Proc. Roy. Irish Acad. Sect. A 84 (1984), no. 1, 1-7.
  • Heins, M.: A universal Blaschke product. Arch. Math. 6 (1954), 41-44.
  • Hoffman, K.: Bounded analytic functions and Gleason parts. Ann. of Math. (2) 86 (1967), 74-111.
  • Littlewood, J.E.: On inequalities in the theory of functions. Proc. London Math. Soc. 23 (1925), 481-519.
  • Matache, V.: The eigenfunctions of a certain composition operator. In Studies on composition operators (Laramie, WY, 1996), 121-136. Contemp. Math. 213. Amer. Math. Soc., Providence, RI, 1998.
  • Mortini, R.: Cyclic subspaces and eigenvectors of the hyperbolic composition operator. In Travaux mathématiques, Fasc. VII, 69-79. Sém. Math. Luxembourg. Centre Univ. Luxembourg, Luxembourg, 1995.
  • Mortini, R.: Infinite dimensional universal subspaces. Proc. Amer. Math. Soc. 135 (2007), no. 6, 1795-1801 (electronic).
  • Nordgren, E.A., Rosenthal, P. and Wintrobe, F.S.: Composition operators and the invariant subspace problem. C. R. Mat. Rep. Acad. Sci. Canada 6 (1984), no. 5, 279-283.
  • Nordgren, E.A., Rosenthal, P. and Wintrobe, F.S.: Invertible composition operators on $H^p$. J. Funct. Anal. 73 (1987), no. 2, 324-344.
  • Shapiro, J.H.: Composition Operators and Classical Function Theory. Springer-Verlag, Berlin, 1993.
  • Zhu, K.: Operator Theory in Function Spaces. Monographs and Textbooks in Pure and Applied Mathematics 139. Marcel Dekker, New York, 1990.