Revista Matemática Iberoamericana

Sums of Toeplitz products with harmonic symbols

Boo Rim Choe , Hyungwoon Koo , and Young Joo Lee

Full-text: Open access

Abstract

On the Bergman space of the unit disk, we consider a class of operators which contain sums of finitely many Toeplitz products with harmonic symbols. We give characterizations of when an operator in that class has finite rank or is compact. Our results provide a unified way of treating several known results.

Article information

Source
Rev. Mat. Iberoamericana, Volume 24, Number 1 (2008), 43-70.

Dates
First available in Project Euclid: 16 July 2008

Permanent link to this document
https://projecteuclid.org/euclid.rmi/1216247095

Mathematical Reviews number (MathSciNet)
MR2435966

Zentralblatt MATH identifier
1148.47024

Subjects
Primary: 47B35: Toeplitz operators, Hankel operators, Wiener-Hopf operators [See also 45P05, 47G10 for other integral operators; see also 32A25, 32M15]
Secondary: 32A36: Bergman spaces

Keywords
Toeplitz operators Bergman space finite rank operators

Citation

Choe , Boo Rim; Koo , Hyungwoon; Lee , Young Joo. Sums of Toeplitz products with harmonic symbols. Rev. Mat. Iberoamericana 24 (2008), no. 1, 43--70. https://projecteuclid.org/euclid.rmi/1216247095


Export citation

References

  • Ahern, P.: On the range of the Berezin transform. J. Funct. Anal. 215 (2004), no. 1, 206-216.
  • Ahern, P. and \u Cučković, \u Z.: A theorem of Brown-Halmos type for Bergman space Toeplitz operators. J. Funct. Anal. 187 (2001), no. 1, 200-210.
  • Ahern, P. and Rudin, W.: $\mathcal M$-harmonic products. Indag. Math. (N.S.) 2 (1991), no. 2, 141-147.
  • Axler, S. and \u Cučković, \u Z.: Commuting Toeplitz operators with harmonic symbols. Integral Equations Operator Theory 14 (1991), no. 1, 1-11.
  • Axler, S. and Zheng, D.: Compact operators via the Berezin transform. Indiana Univ. Math. J. 47 (1998), no. 2, 387-400.
  • Choe, B. R., Koo, H. and Lee, Y. J.: Commuting Toeplitz operators on the polydisk. Trans. Amer. Math. Soc. 356 (2004), no. 5, 1727-1749.
  • Choe, B. R. and Lee, Y. J.: Pluriharmonic symbols of commuting Toeplitz operators. Illinois J. Math. 37 (1993), no. 3, 424-436.
  • Choe, B. R. and Lee, Y. J.: Pluriharmonic symbols of essentially commuting Toeplitz operators. Illinois J. Math. 42 (1998), no. 2, 280-293.
  • Choe, B., Lee, Y. J., Nam, K. and Zheng, D.: Products of Bergman space Toeplitz operators on the polydisk. Math. Ann. 337 (2007), no. 2, 295-316.
  • Coburn, L.: A Lipschitz estimate for Berezin's operator calculus. Proc. Amer. Math. Soc. 133 (2005), no. 1, 127-131.
  • Guo, K., Sun, S. and Zheng, D.: Finite rank commutators and semicommutators of Toeplitz operators with harmonic symbols. Illinois J. Math. 51 (2007), no. 2, 583-596.
  • Hedenmalm, H., Korenblum, B. and Zhu, K.: Theory of Bergman space. Graduate Text in Math. 199. Springer-Verlag, New York, 2000.
  • Hoffman, K.: Bounded analytic functions and Gleason parts. Ann. of Math. (2) 86 (1967), 74-111.
  • Rudin, W.: Function theory in the unit ball of $\mathbbC^n$. Grundlehren der Mathematischen Wissenschaften 241. Springer-Verlag, New York-Berlin, 1980.
  • Stroethoff, K.: Essentially commuting Toeplitz operators with harmonic symbols. Can. J. Math. 45 (1993), no. 5, 1080-1093.
  • Zheng, D.: Hankel operators and Toeplitz operators on the Bergman space. J. Funct. Anal. 83 (1989), no. 1, 98-120.