Revista Matemática Iberoamericana

A new type of solutions for a singularly perturbed elliptic Neumann problem

Gongbao Li , Shuangjie Peng, and Shusen Yan

Full-text: Open access

Abstract

We prove the existence of positive solutions concentrating simultaneously on some higher dimensional manifolds near and on the boundary of the domain for a nonlinear singularly perturbed elliptic Neumann problem.

Article information

Source
Rev. Mat. Iberoamericana, Volume 23, Number 3 (2007), 1039-1066.

Dates
First available in Project Euclid: 27 February 2008

Permanent link to this document
https://projecteuclid.org/euclid.rmi/1204128310

Mathematical Reviews number (MathSciNet)
MR2414502

Zentralblatt MATH identifier
1153.35040

Subjects
Primary: 35J60: Nonlinear elliptic equations 35J25: Boundary value problems for second-order elliptic equations

Keywords
singularly perturbed elliptic equation variational method concentrating solutions higher dimensional manifolds

Citation

Li , Gongbao; Peng, Shuangjie; Yan, Shusen. A new type of solutions for a singularly perturbed elliptic Neumann problem. Rev. Mat. Iberoamericana 23 (2007), no. 3, 1039--1066. https://projecteuclid.org/euclid.rmi/1204128310


Export citation

References

  • Ambrosetti, A., Malchiodi, A. and Ni, W.-M.: Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres. I. Comm. Math. Phys. 235 (2003), 427-466.
  • Ambrosetti, A., Malchiodi, A. and Ni, W. M.: Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres. II. Indiana Univ. Math. J. 53 (2004), 297-329.
  • Bartsch, T. and Peng, S.: Existence of solutions concentrating on higher dimensional subsets for singularly perturbed elliptic equations (I). To appear in Indiana Univ. Math. J.
  • Bartsch, T. and Peng, S.: Existence of solutions concentrating on higher dimensional subsets for singularly perturbed elliptic equations (II). Preprint.
  • Bates, P., Dancer, E. N. and Shi, J.: Multi-spike stationary solutions of the Cahn-Hilliard equation in higher-dimension and instability. Adv. Differential Equations 4 (1999), 1-69.
  • Cao, D. and Küpper, T.: On the existence of multipeaked solutions to a semilinear Neumann problem Duke Math. J. 97 (1999), 261-300.
  • Dancer, E. N.: Some singularly perturbed problems on annuli and a counterexample to a problem of Gidas, Ni and Nirenberg. Bull. London Math. Soc. 29 (1997), 322-326.
  • Dancer, E. N. and Yan, S.: Multipeak solutions for a singularly perturbed Neumann Problem. Pacific J. Math. 189 (1999), 241-262.
  • Dancer, E. N. and Yan, S.: Interior and boundary peak solutions for a mixed boundary value problem. Indiana Univ. Math. J. 48 (1999), 1177-1212.
  • Dancer, E. N. and Yan, S.: A new type of concentration solutions for a singularly perturbed elliptic problem. Trans. Amer. Math. Soc. 359 (2007), no. 4, 1765-1790.% (electronic).
  • Del Pino, M. and Felmer, P.: Spike-layered solutions of singularly perturbed elliptic problems in a degenerate setting. Indiana Univ. Math. J. 48 (1999), 883-898.
  • Gui, C. and Wei, J.: Multiple interior peak solutions for some singularly perturbed Neumann problems. J. Differential Equations 158 (1999), 1-27.
  • Gui, C. and Wei, J.: On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems. Canad. J. Math. 52 (2000), 522-538.
  • Gui, C., Wei, J. and Winter, M.: Multiple boundary peak solutions for some singularly perturbed Neumann problems. Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000), 47-82.
  • Kwong, M. K.: Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $R^n$. Arch. Rational Mech. Anal. 105 (1989), 243-266.
  • Li, Y. Y.: On a singularly perturbed equation with Neumann boundary condition. Comm. Partial Differential Equations 23 (1998), 487-545.
  • Malchiodi, A.: Construction of multidimensional spike-layers. Discrete Contin. Dyn. Syst. 14 (2006), 187-202.
  • Malchiodi, A. and Montenegro, M.: Boundary concentration phenomena for a singularly perturbed elliptic problem. Comm. Pure Appl. Math. 55 (2002), 1507-1568.
  • Malchiodi, A. and Montenegro, M.: Multidimensional boundary layers for a singularly perturbed Neumann problem. Duke Math. J. 124 (2004), 105-143.
  • Malchiodi, A., Ni, W.-M. and Wei, J.: Multiple clustered layer solutions for semilinear Neumann problems on a ball. Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2005), 143-163.
  • Ni, W.-M.: Diffusion, cross-diffusion, and their spike-layer steady states. Notices Amer. Math. Soc. 45 (1998), 9-18.
  • Ni, W.-M. and Takagi, I.: On the shape of least-energy solutions to a semilinear Neumann problem. Comm. Pure Appl. Math. 44 (1991), 819-851.
  • Ni, W.-M. and Takagi, I.: Locating the peaks of least-energy solutions to a semilinear Neumann problem. Duke Math. J. 70 (1993), 247-281.
  • Wei, J.: On the boundary spike layer solutions to a singularly perturbed Neumann problem. J. Differential Equations 134 (1997), 104-133.
  • Yan, S.: On the number of interior multipeak solutions for singularly perturbed Neumann problems. Topol. Methods Nonlinear Anal. 12 (1998), 61-78.