Revista Matemática Iberoamericana

The Poisson's problem for the Laplacian with Robin boundary condition in non-smooth domains

Loredana Lanzani and Osvaldo Méndez

Full-text: Open access


Given a bounded Lipschitz domain $\Omega\subset {\mathbb R}^n$, $n\geq 3$, we prove~that the Poisson's problem for the Laplacian with right-hand side in $L^p_{-t}(\Omega)$, Robin-type boundary datum in the Besov space $B^{1-1/p-t,p}_{p}(\partial \Omega)$ and non-negative, non-everywhere vanishing Robin coefficient $b\in L^{n-1}(\partial \Omega)$, is uniquely solvable in the class $L^p_{2-t}(\Omega)$ for $(t,\frac{1}{p})\in {\mathcal V}_{\epsilon}$, where ${\mathcal V}_{\epsilon}$ ($\epsilon\geq 0$) is an open ($\Omega$,$b$)-dependent plane region and ${\mathcal V}_{0}$ is to be interpreted ad the common (optimal) solvability region for all Lipschitz domains. We prove a similar regularity result for the Poisson's problem for the 3-dimensional Lamé System with traction-type Robin boundary condition. All solutions are expressed as boundary layer potentials.

Article information

Rev. Mat. Iberoamericana, Volume 22, Number 1 (2006), 181-204.

First available in Project Euclid: 24 May 2006

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 45E99: None of the above, but in this section 47G10: Integral operators [See also 45P05] 46E35: Sobolev spaces and other spaces of "smooth" functions, embedding theorems, trace theorems

non-smooth domains Besov spaces Triebel-Lizorkin spaces boundary layer potentials regularity of PDE's Robin condition Lamé system Poisson's problem


Lanzani , Loredana; Méndez , Osvaldo. The Poisson's problem for the Laplacian with Robin boundary condition in non-smooth domains. Rev. Mat. Iberoamericana 22 (2006), no. 1, 181--204.

Export citation


  • Coifman, R., McIntosh, A. and Meyer, Y.: L'intégrale de Cauchy définit un opérateur borné sur $L^2$ pour les courbes Lipschitziennes. Ann. of Math. (2) 116 (1982), 361-387.
  • Dahlberg, B. E. J. and Kenig, C. E.: Hardy spaces and the Neumann problem in $L^p$ for Laplace's equation in Lipschitz domains. Ann. of Math. (2) 125 (1987), 437-465.
  • Dahlberg, B. E. J. and Kenig, C. E.: $L^p$ estimates for the three-dimensional systems of elastostatics on Lipschitz domains. In Analysis and partial differential equations, 621-634. Lecture Notes in Pure and Applied Math. 122, Dekker, New York, 1990.
  • Dahlberg, B. E. J., Kenig, C. E. and Verchota, G. C.: Boundary value problems for the systems of elastostatics in Lipschitz domains. Duke Math. J. 57 (1988), 795-818.
  • Edmunds, D. E. and Triebel, H.: Function spaces, entropy numbers, differential operators. Cambridge Tracts in Mathematics 120. Cambridge University Press, Heidelberg, 1996.
  • Fabes, E. B., Jodeit, M. Jr. and Lewis, J. E.: On the spectra of a Hardy kernel. J. Funct. Anal. 21 (1976), 187-194.
  • Fabes, E. B., Jodeit, M. Jr. and Rivière, N. M.: Potential techniques for boundary value problems on $C^1$-domains. Acta Math. 141 (1978), 165-186.
  • Fabes, E., Méndez, O. and Mitrea, M.: Boundary layers on Sobolev-Besov spaces and Poisson's equation for the Laplacian in Lipschitz domains. J. Funct. Anal. 159 (1998), 323-368.
  • Frazier, M. and Jawerth, B.: A discrete transform and decompositions of distribution spaces. J. Funct. Anal. 93 (1990), 34-170.
  • Grisvard, P.: Elliptic problems in nonsmooth domains. Monographs and Studies in Mathematics 24. Pitman, Boston, 1985.
  • Jerison, D. and Kenig, C.: The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal. 130 (1995), 161-219.
  • Jonsson, A. and Wallin, H.: Function Spaces on subsets of $\mathbb R^n$. Math. Rep. 2. Harwood Academic, New York, 1984.
  • Kenig, C.: Harmonic analysis techniques for second order elliptic boundary value problems. CBMS Regional Conference Series in Mathematics 83. American Mathematical Society, Providence, RI, 1994.
  • Lanzani, L. and Shen, Z.: On the Robin boundary condition for Laplace's equation in Lipschitz domains. Comm. Partial Differential Equations 29 (2004), 91-109.
  • LiMa:1972 Lions, J.-L. and Magenes, E.: Non-Homogeneous boundary value problems and applications, I, II. Die Grundlehren der mathematischen Wissenschaften 181, 182. Springer Verlag, New York-Heidelberg, 1972.
  • Méndez, O. and Mitrea, M.: Complex powers of the Neumann Laplacian in Lipschitz domains. Math. Nachr. 223 (2001), 77-88.
  • Méndez, O. and Mitrea, M.: The Banach envelopes of Besov and Triebel-Lizorkin spaces and applications to partial differential equations. J. Fourier Anal. Appl. 6 (2000), 503-531.
  • Mitrea, M. and Taylor, M.: Potential theory on Lipschitz domains in Riemannian manifolds: the case of Dini metric tensors. Trans. Amer. Math. Soc. 355 (2003), no. 5, 1961-1985.
  • Runst, T. and Sickel, W.: Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations. De Gruyter Series in Nonlinear Analysis and Applications 3. Walter de Gruyter, Berlin, 1996.
  • Triebel, H.: Theory of function spaces. Monographs in Mathematics 78. Birkhäuser Verlag, Basel, 1983.
  • Triebel, H.: Theory of function spaces II. Monographs in Mathematics 84. Birkhäuser Verlag, Basel, 1992.
  • Triebel, H.: Interpolation theory, function spaces, differential operators. Second edition. Johann Ambrosius Barth, Heidelberg, 1995.
  • Verchota, G.: Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains. J. Funct. Anal. 59 (1984), 572-611.