Revista Matemática Iberoamericana

Meromorphic functions of the form $f(z) = \sum_{n=1}^\infty a_n/(z - z_n)$

James K. Langley and John Rossi

Full-text: Open access


We prove some results on the zeros of functions of the form $f(z) = \sum_{n=1}^\infty \frac{a_n}{z - z_n}$, with complex $a_n$, using quasiconformal surgery, Fourier series methods, and Baernstein's spread theorem. Our results have applications to fixpoints of entire functions.

Article information

Rev. Mat. Iberoamericana, Volume 20, Number 1 (2004), 285-314.

First available in Project Euclid: 2 April 2004

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 30D35: Distribution of values, Nevanlinna theory

meromorphic functions zeros critical points logarithmic potentials quasiconformal surgery


Langley, James K.; Rossi, John. Meromorphic functions of the form $f(z) = \sum_{n=1}^\infty a_n/(z - z_n)$. Rev. Mat. Iberoamericana 20 (2004), no. 1, 285--314.

Export citation


  • Ahlfors, L. V.: Lectures on quasiconformal mappings. Van Nostrand, Toronto-New York-London, 1966.
  • Baernstein, A.: Proof of Edrei's spread conjecture. Proc. London Math. Soc. (3) 26 (1973), 418-434.
  • Barry, P. D.: On a theorem of Besicovitch. Quart. J. Math. Oxford Ser. (2) 14 (1963), 293-302.
  • Barry, P. D.: On a theorem of Kjellberg. Quart. J. Math. Oxford Ser. (2) 15 (1964), 179-191.
  • Beardon, A. F.: Iteration of rational functions. Springer, New York, Berlin, Heidelberg, 1991.
  • Bergweiler, W.: Iteration of meromorphic functions. Bull. Amer. Math. Soc. 29 (1993), 151-188.
  • Clunie, J., Eremenko, A. and Rossi, J.: On equilibrium points of logarithmic and Newtonian potentials. J. London Math. Soc. (2) 47 (1993), 309-320.
  • Drasin, D. and Shea, D. F.: Convolution inequalities, regular variation and exceptional sets. J. Analyse Math. 29 (1976), 232-293.
  • Edrei, A. and Fuchs, W. H. J.: Bounds for the number of deficient values of certain classes of meromorphic functions. Proc. London Math. Soc. (3) 12 (1962), 315-344.
  • Eremenko, A.: Meromorphic functions with small ramification. Indiana Univ. Math. J. 42 (1994), no. 4, 1193-1218.
  • Eremenko, A., Langley, J. K. and Rossi, J.: On the zeros of meromorphic functions of the form $ \sum_k=1^\infty \frac a_k z - z_k $. J. Analyse Math. 62 (1994), 271-286.
  • Frank, G. and Weissenborn, G.: Rational deficient functions of meromorphic functions. Bull. London Math. Soc. 18 (1986), 29-33.
  • Gol'dberg, A. A. and Ostrowski, I. V.: Distribution of values of meromorphic functions. Nauka, Moscow, 1970.
  • Gol'dberg, A. A. and Sheremeta, M. M.: The fixed points of entire functions. Visnik Lvov Derzh. Univ. Ser. Mekh-Mat. no. 6 (1971), 5-8, 133.
  • Gol'dberg, A. A. and Sokolovskaya, O. P.: Some relations for meromorphic functions of order or lower order less than one. Izv. Vyssh. Uchebn. Zaved. Mat. 31 (1987), no. 6, 26-31. Translation: Soviet Math. (Izv. VUZ) 31 (1987), no. 6, 29-35.
  • Hayman, W. K.: Meromorphic functions. Oxford Mathematical Monographs. Clarendon Press, Oxford, 1964.
  • Hayman, W. K.: On the characteristic of functions meromorphic in the plane and of their integrals. Proc. London Math. Soc. (3) 14A (1965), 93-128.
  • Hayman, W. K.: Subharmonic functions Vol. 2. London Mathematical Society Monographs 20. Academic Press Inc., London, 1989.
  • Hellerstein, S., Miles, J. and Rossi, J.: On the growth of solutions of $f '' + gf' + hf = 0$. Trans. Amer. Math. Soc. 324 (1991), 693-706.
  • Langley, J. K.: Bank-Laine functions with sparse zeros. Proc. Amer. Math. Soc. 129 (2001), 1969-1978.
  • Langley, J. K. and Shea, D. F.: On multiple points of meromorphic functions. J. London Math. Soc. (2) 57 (1998), 371-384.
  • Lehto, O. and Virtanen, K.: Quasiconformal mappings in the plane, 2nd ed. Springer, Berlin, 1973.
  • Miles, J.: On entire functions of infinite order with radially distributed zeros. Pacific J. Math. 81 (1979), 131-157.
  • Miles, J. and Rossi, J.: Linear combinations of logarithmic derivatives of entire functions with applications to differential equations. Pacific J. Math. 174 (1996), 195-214.
  • Miles, J. and Rossi, J.: On a conjecture of Fuchs. Proc. Roy. Soc. Edinburgh Sect. A 131 (2001), 1-8.
  • Nevanlinna, R.: Eindeutige analytische Funktionen. 2. Auflage. Springer, Berlin, 1953.
  • Shishikura, M.: On the quasi-conformal surgery of rational functions. Ann. Sci. École Norm. Sup. (4) 20 (1987), 1-29.
  • Steinmetz, N.: Rational iteration. De Gruyter Studies in Mathematics 16. Walter de Gruyter, Berlin/New York, 1993.
  • Tsuji, M.: Potential theory in modern function theory. Maruzen, Tokyo, 1959.
  • Whittington, J. E.: On the fixpoints of entire functions. Proc. London Math. Soc. (3) 17 (1967), 530-546.