Real Analysis Exchange

On the Comparison of Density Type Topologies Generated by Functions

Małgorzata Filipczak and Tomasz Filipczak

Full-text: Open access


In the paper there is presented a necessary and sufficient condition to compare \(f\)-density topologies.

Article information

Real Anal. Exchange, Volume 36, Number 2 (2010), 341-352.

First available in Project Euclid: 11 November 2011

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 54A10: Several topologies on one set (change of topology, comparison of topologies, lattices of topologies) 26A15: Continuity and related questions (modulus of continuity, semicontinuity, discontinuities, etc.) {For properties determined by Fourier coefficients, see 42A16; for those determined by approximation properties, see 41A25, 41A27} 26E25%
Secondary: 26E25: Set-valued functions [See also 28B20, 49J53, 54C60] {For nonsmooth analysis, see 49J52, 58Cxx, 90Cxx}

density points density topology comparison of topologies \(f\)-density


Filipczak, Małgorzata; Filipczak, Tomasz. On the Comparison of Density Type Topologies Generated by Functions. Real Anal. Exchange 36 (2010), no. 2, 341--352.

Export citation


  • M. Filipczak, T. Filipczak, Remarks on $f$ -density and $\psi $-density, Tatra Mt. Math. Publ., 34 (2006), 141–149.
  • M. Filipczak, T. Filipczak, On $f$-density topologies, Topology Appl., 155(17-18) (2008), 1980–1989.
  • M. Filipczak, T. Filipczak, Density topologies generated by functions and by sequences, Tatra Mt. Math. Publ., 40 (2008), 103–115.
  • M. Filipczak, T. Filipczak, On the comparison of the density type topologies generated by sequences and by functions, Comm. Math., 49(2) (2009), 161–169.
  • M. Filipczak, T. Filipczak, $\left( \Delta _{2}\right) $ condition for $f$-density topologies, submitted.
  • M. Filipczak, T. Filipczak, J. Hejduk, On the Comparison of the Density Type Topologies, Atti Sem. Mat. Fis. Univ. Modena, 52 (2004), 37–46.
  • T. Filipczak, The comparison of $f$-density and $\psi $-density, submitted.
  • J. C. Oxtoby, Measure and Category, Springer-Verlag, 1980.
  • S. J. Taylor, On strengthening the Lebesgue Density Theorem, Fund. Math., 46 (1959), 305–315.
  • M. Terepeta, E. Wagner-Bojakowska, $\psi $ -density topology, Rend. Circ. Mat. Palermo, 48 Serie II (1999), 451–476.
  • E. Wagner-Bojakowska, W. Wilczyński, Comparison of $\psi $-density topologies, Real Analysis Exchange, 25(2) (1999-2000), 661–672.