Real Analysis Exchange

A Convergence Theorem for the Henstock-Kurzweil Integral

Sokol B. Memetaj

Full-text: Open access


We present a convergence theorem for the Henstock-Kurzweil integral of functions taking values in a locally convex topological vector space, which is sequentially complete with respect to its weak topology.

Article information

Real Anal. Exchange, Volume 35, Number 2 (2009), 509-516.

First available in Project Euclid: 22 September 2010

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 28B05: Vector-valued set functions, measures and integrals [See also 46G10]
Secondary: 46G10: Vector-valued measures and integration [See also 28Bxx, 46B22]

HK-integral locally convex topological vector spaces weak topology HK-integrable


Memetaj, Sokol B. A Convergence Theorem for the Henstock-Kurzweil Integral. Real Anal. Exchange 35 (2009), no. 2, 509--516.

Export citation


  • Ye Guoju and Š. Schwabik, Topics in Banach Space Integration, Series in Real Analysis 10, World Scientific, Singapore, (2005).
  • Y. Kōmura, Some examples on linear topological spaces, Math. Ann., 153, (1964), 150–162.
  • J.Kurzweil, Nichtabsolut Konvergente Integrale, Teubner-Texte zur Mathematik, 26. BSB B. G. Teubner Verlagsgesellschaft, Leipzig, (1980) (German).
  • V. Marraffa, Non absolutely convergent integrals of functions taking values in a locally convex space, Rocky Mountain J. of Math., 36, no. 5, (2006), 1577–1593.
  • R. McLeod, The Generalized Riemann Integral, Carus Mathematical Monographs, 20, Math. Assoc. Amer., Washington, D.C., (1980).
  • H. H. Schaefer, Topological Vector Spaces, Springer-Verlag, New York, (1971).
  • K. Yosida, Functional Analysis, Springer-Verlag, Berlin-Heidelberg, (1980).