Real Analysis Exchange

Singularities of Bounded Harmonic Functions

V. Anandam and S. I. Othman

Full-text: Open access

Abstract

In a harmonic space, the property that $k$ is a compact set of removable singularities for bounded harmonic functions defined in a neighborhood of $k$ is independent of the neighborhood chosen.

Article information

Source
Real Anal. Exchange, Volume 25, Number 2 (1999), 641-646.

Dates
First available in Project Euclid: 3 January 2009

Permanent link to this document
https://projecteuclid.org/euclid.rae/1230995398

Mathematical Reviews number (MathSciNet)
MR1778516

Zentralblatt MATH identifier
1038.31009

Subjects
Primary: 31D05: Axiomatic potential theory 31C05: Harmonic, subharmonic, superharmonic functions

Keywords
Harmonic extension locally polar set harmonic space

Citation

Othman, S. I.; Anandam, V. Singularities of Bounded Harmonic Functions. Real Anal. Exchange 25 (1999), no. 2, 641--646. https://projecteuclid.org/euclid.rae/1230995398


Export citation

References

  • V. Anandam, Espaces harmoniques sans potentiel positif, Ann. Inst. Fourier, 22 (1972), 97–160.
  • V. Anandam, Sur une propriétè de la fonction harmonique, Bull. Sc. Math., 101 (1977), 255–263.
  • V. Anandam and M. Al Gwaiz, Global representation of harmonic and biharmonic functions, Potential Analysis, 6 (1997), 207–214.
  • S. Axler, P. Bourdon and W. Ramey, Harmonic function theory, Springer-Verlag, N.Y., 1992.
  • M. Brelot, Axiomatique des fonctions harmoniques, Les Presses de l'Université, Montréal, 1965.
  • C. Constantinescu and A. Cornea, Potential theory on harmonic spaces, Grundleheren, 158, Springer-Verlag, 1972.
  • M. Nakai, On Evans kernel, Pacific J. Math., 22 (1967), 125–137.