Real Analysis Exchange

Packing Measure in General Metric Space

G. A. Edgar

Full-text: Open access


Packing measures are counterparts to Hausdorff measures, used in measuring fractal dimension of sets. C. Tricot defined them for subsets of finite-dimensional Euclidean space. We consider here the proper way to phrase the definitions for use in general metric spaces, and for Hausdorff functions other than the simple powers, in particular non-blanketed Hausdorff functions. The question of the Vitali property arises in this context. An example of a metric space due to R. O. Davies illustrates the concepts.

Article information

Real Anal. Exchange, Volume 26, Number 2 (2000), 831-852.

First available in Project Euclid: 27 June 2008

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 28A80: Fractals [See also 37Fxx]
Secondary: 26A39: Denjoy and Perron integrals, other special integrals

fractal measure packing measure Davies space Vitali property


Edgar, G. A. Packing Measure in General Metric Space. Real Anal. Exchange 26 (2000), no. 2, 831--852.

Export citation


  • A. S. Besicovitch, A general form of the covering principle and relative differentiation of additive functions, Proc. Cambridge Philos. Soc. 41 (1945) 103–110.
  • E. Boardman, Some Hausdorff measure properties of the space of compact subsets of $[0,1]$, Quart. J. Math. Oxford Ser. 2 24 (1973) 333–341.
  • C. Cutler, The density theorem and Hausdorff inequality for packing measure in general metric spaces, Illinois J. Math. 39 (1995) 676–694.
  • R. O. Davies, Measures not approximable or not specifiable by means of balls, Mathematika 18 (1971) 157–160.
  • G. A. Edgar, Measure, Topology, and Fractal Geometry, Springer-Verlag New York, 1990.
  • G. A. Edgar Packing measure as a gauge variation, Proc. Amer. Math. Soc. 122 (1994) 167–174.
  • G. A. Edgar, Integral, Probability, and Fractal Measures Springer-Verlag New York, 1998.
  • P. R. Goodey, Hausdorff measure functions in the space of compact subsets of the unit interval, Trans. Amer. Math. Soc. 226 (1977) 203–208.
  • H. Haase, Non-$\sigma$-finite sets for packing measure, Mathematika 33 (1986) 129–136.
  • H. Haase, The packing theorem and packing measure, Math. Nachr. 146 (1990) 77–84.
  • F. Hausdorff, Dimension und äuß eres Maß, Math. Ann. 79 (1918) 157–179.
  • C. A. Hayes and C. Y. Pauc, Derivation and Martingales, Springer-Verlag New York, 1970.
  • R. Henstock, The General Theory of Integration, Clarendon Press, Oxford, 1991.
  • H. Joyce and D. Preiss, On the existence of subsets of positive finite packing measure, Mathematika 42 (1995) 14–24.
  • A. N. Kolmogorov and V. M. Tihomirov, $\epsilon$-entropy and $\epsilon$-capacity of sets in functional spaces, Uspehi Matematicheskih Nauk 14 (1959) 2–38 (Russian).
  • D. G. Larman, A new theory of dimension, Proc. London Math. Soc. 17 (1967) 178–192.
  • P. Mattila and R. D. Mauldin, Measure and dimension functions: measurability and densities, Math. Proc. Camb. Phil. Soc. 121 (1997) 81–100.
  • M. McClure, Fractal measures on infinite-dimensional sets, Ph.D. dissertation, The Ohio State University, 1994.
  • M. McClure, Entropy dimensions of the hyperspace of compact sets, Real Anal. Exch. 21 (1995/96) 194–200.
  • S. Meinershagen, The symmetric derivation basis measure and the packing measure, Proc. Amer. Math. Soc. 103 (1988) 813–814.
  • X. Saint Raymond and C. Tricot, Packing regularity of sets in $n$-space, Math. Proc. Cambridge Phlos. Soc. 103 (1988) 133–145.
  • S. J. Taylor and C. Tricot, Packing measure, and its evaluation for a Brownian path, Trans. Amer. Math. Soc. 288 (1985) 679–699.
  • B. S. Thomson, Construction of measures in metric spaces, J. London Math. Soc. 14 (1976) 21–24.
  • C. Tricot, Two definitions of fractional dimension, Math. Proc. Cambridge Philos. Soc. 91 (1982) 57–74.