Real Analysis Exchange

On Marczewski-Burstin Representations of Certain Algebras of Sets

Marek Balcerzak, Artur Bartoszewicz, and Krzysztof Ciesielski

Full-text: Open access

Abstract

We show that the Generalized Continuum Hypothesis GCH (its appropriate part) implies that many natural algebras on $\mathbb{R}$, including the algebra $\mathcal{B}$ of Borel sets and the interval algebra $\Sigma$, are outer Marczewski-Burstin representable by families of non-Borel sets. Also we construct, assuming again an appropriate part of GCH, that there are algebras on $\mathbb{R}$ which are not MB-representable. We prove that some algebras (including $\mathcal{B}$ and $\Sigma$) are not inner MB-representable. We give examples of algebras which are inner and outer MB-representable, or are inner but not outer MB-representable.

Article information

Source
Real Anal. Exchange, Volume 26, Number 2 (2000), 581-592.

Dates
First available in Project Euclid: 27 June 2008

Permanent link to this document
https://projecteuclid.org/euclid.rae/1214571351

Mathematical Reviews number (MathSciNet)
MR1844137

Zentralblatt MATH identifier
1012.28002

Subjects
Primary: 03E35: Consistency and independence results
Secondary: 28A05: Classes of sets (Borel fields, $\sigma$-rings, etc.), measurable sets, Suslin sets, analytic sets [See also 03E15, 26A21, 54H05]

Keywords
Borel sets ultrafilters Continuum Hypothesis MB-representation

Citation

Balcerzak, Marek; Bartoszewicz, Artur; Ciesielski, Krzysztof. On Marczewski-Burstin Representations of Certain Algebras of Sets. Real Anal. Exchange 26 (2000), no. 2, 581--592. https://projecteuclid.org/euclid.rae/1214571351


Export citation

References

  • M. Balcerzak, A. Bartoszewicz, J. Rzepecka, S. Wroński, Marczewski fields and ideals, Real Anal. Exchange, this issue.
  • J. B. Brown, H. Elalaoui-Talibi, Marczewski-Burstin like characterizations of $\sigma$-algebras, ideals, and measurable functions, Colloq. Math. 82 (1999), 227–286.
  • C. Burstin, Eigenschaften messbarer und nichtmessbarer Mengen, Sitzungsber. Kaiserlichen Akad. Wiss. Math.-Natur. Kl. Abteilung IIa, 123 (1914), 1525–1551.
  • K. Ciesielski, Set Theory for the Working Mathematician,
  • H. Elalaoui-Talibi, On Marczewski-Burstin like characterizations of certain $\sigma$-algebras and $\sigma$-ideals, Real Anal. Exchange, to appear.
  • E. Marczewski (Szpilrajn), Sur un classe de fonctions de M. Sierpiński et la classe correspondante d'ensembles, Fund. Math. 24 (1935), 17–34.
  • A. Miller, Special subsets of the real line, in: Handbook of Set Theoretic Topology, (K. Kunen and J.E. Vaughan, eds.), Elsevier 1984.
  • P. Reardon, Ramsey, Lebesgue and Marczewski sets and the Baire property, Fund. Math. 149 (1996), 191–203.
  • S. Wroński, On proper subuniverses of a Boolean algebra, Acta Univ. Lodz. Folia Math. 9 (1997), 69–76.
  • S. Wroński, private communication.