Real Analysis Exchange

Hausdorff Dimension, Analytic Sets and Transcendence

G. A. Edgar and Chris Miller

Full-text: Open access

Abstract

Every analytic real closed proper sub-field of $\mathbb R$ has Hausdorff dimension zero. Equivalently, every analytic set of real numbers having positive Hausdorff dimension contains a transcendence base for $\mathbb R$.

Article information

Source
Real Anal. Exchange, Volume 27, Number 1 (2001), 335-340.

Dates
First available in Project Euclid: 6 June 2008

Permanent link to this document
https://projecteuclid.org/euclid.rae/1212763973

Mathematical Reviews number (MathSciNet)
MR1887864

Zentralblatt MATH identifier
1082.28002

Subjects
Primary: 28A05: Classes of sets (Borel fields, $\sigma$-rings, etc.), measurable sets, Suslin sets, analytic sets [See also 03E15, 26A21, 54H05] 28A78: Hausdorff and packing measures 03C64: Model theory of ordered structures; o-minimality 03E15: Descriptive set theory [See also 28A05, 54H05] 12L12: Model theory [See also 03C60]

Keywords
Hausdorff dimension analytic sets Borel subrings real closed fields

Citation

Edgar, G. A.; Miller, Chris. Hausdorff Dimension, Analytic Sets and Transcendence. Real Anal. Exchange 27 (2001), no. 1, 335--340. https://projecteuclid.org/euclid.rae/1212763973


Export citation

References

  • J. Bochnak, M. Coste, and M.-F. Roy, Real algebraic geometry, Ergeb. Math. Grenzgeb., 36(3), Springer, 1998, translated from the 1987 original, revised by the authors.
  • D. Cohn, Measure theory, Birkhauser, 1980.
  • ––––, Tame topology and o-minimal structures, London Math. Soc. Lecture Note Ser., 248, Cambridge Univ. Press, Cambridge, 1998.
  • G. Edgar, Integral, probability and fractal measure, Springer, 1998.
  • P. Erdős and B. Volkmann, Additive Gruppen mit vorgegebener Hausdorffscher Dimension, J. Reine Angew. Math., 221 (1966), 203–208.
  • K. Falconer, Fractal geometry: Mathematical foundations and applications, John Wiley & Sons, 1990.
  • A. Kechris, Classical descriptive set theory, Grad. Texts in Math., 156, Springer-Verlag, 1995.
  • P. Mattila, Geometry of sets and measures in euclidean spaces, Cambridge Stud. Adv. Math., 44, Cambridge Univ. Press, 1995.
  • J. Oxtoby, Measure and category, 2nd ed., Grad. Texts in Math., 2, Springer, 1980.
  • C. Rogers, Hausdorff measures, Cambridge Univ. Press, 1970.