Probability Surveys
- Probab. Surveys
- Volume 9 (2012), 103-252.
Simply generated trees, conditioned Galton–Watson trees, random allocations and condensation
Full-text: Open access
Abstract
We give a unified treatment of the limit, as the size tends to infinity, of simply generated random trees, including both the well-known result in the standard case of critical Galton–Watson trees and similar but less well-known results in the other cases (i.e., when no equivalent critical Galton–Watson tree exists). There is a well-defined limit in the form of an infinite random tree in all cases; for critical Galton–Watson trees this tree is locally finite but for the other cases the random limit has exactly one node of infinite degree.
The proofs use a well-known connection to a random allocation model that we call balls-in-boxes, and we prove corresponding theorems for this model.
This survey paper contains many known results from many different sources, together with some new results.
Article information
Source
Probab. Surveys, Volume 9 (2012), 103-252.
Dates
First available in Project Euclid: 8 March 2012
Permanent link to this document
https://projecteuclid.org/euclid.ps/1331216239
Digital Object Identifier
doi:10.1214/11-PS188
Mathematical Reviews number (MathSciNet)
MR2908619
Zentralblatt MATH identifier
1244.60013
Subjects
Primary: 60C50
Secondary: 05C05: Trees 60F05: Central limit and other weak theorems 60J80: Branching processes (Galton-Watson, birth-and-death, etc.)
Keywords
Random trees simply generated trees Galton–Watson trees random allocations balls in boxes size-biased Galton–Watson tree random forests
Citation
Janson, Svante. Simply generated trees, conditioned Galton–Watson trees, random allocations and condensation. Probab. Surveys 9 (2012), 103--252. doi:10.1214/11-PS188. https://projecteuclid.org/euclid.ps/1331216239
References
- [1] L. Addario-Berry, L. Devroye & S. Janson, Sub-Gaussian tail bounds for the width and height of conditioned Galton–Watson trees. Ann. Probab., to appear. arXiv:1011.4121arXiv: 1011.4121
- [2] D. Aldous, Asymptotic fringe distributions for general families of random trees. Ann. Appl. Probab. 1 (1991), no. 2, 228–266.Mathematical Reviews (MathSciNet): MR1102319
Zentralblatt MATH: 0733.60016
Digital Object Identifier: doi:10.1214/aoap/1177005936
Project Euclid: euclid.aoap/1177005936 - [3] D. Aldous, The continuum random tree I. Ann. Probab. 19 (1991), no. 1, 1–28.Mathematical Reviews (MathSciNet): MR1085326
Zentralblatt MATH: 0722.60013
Digital Object Identifier: doi:10.1214/aop/1176990534
Project Euclid: euclid.aop/1176990534 - [4] D. Aldous, The continuum random tree II: an overview. Stochastic Analysis (Durham, 1990), 23–70, London Math. Soc. Lecture Note Ser. 167, Cambridge Univ. Press, Cambridge, 1991.Mathematical Reviews (MathSciNet): MR1166406
Zentralblatt MATH: 0791.60008
Digital Object Identifier: doi:10.1017/CBO9780511662980.003 - [5] D. Aldous, The continuum random tree III. Ann. Probab. 21 (1993), no. 1, 248–289.Mathematical Reviews (MathSciNet): MR1207226
Zentralblatt MATH: 0791.60009
Digital Object Identifier: doi:10.1214/aop/1176989404
Project Euclid: euclid.aop/1176989404 - [6] D. Aldous & J. Pitman, Tree-valued Markov chains derived from Galton–Watson processes. Ann. Inst. H. Poincaré Probab. Statist. 34 (1998), no. 5, 637–686.Mathematical Reviews (MathSciNet): MR1641670
Zentralblatt MATH: 0917.60082
Digital Object Identifier: doi:10.1016/S0246-0203(98)80003-4 - [7] R. Arratia, A. D. Barbour & S. Tavaré, Logarithmic Combinatorial Structures: a Probabilistic Approach, EMS, Zürich, 2003.
- [8] K. B. Athreya & P. E. Ney, Branching Processes. Springer-Verlag, Berlin, 1972.Mathematical Reviews (MathSciNet): MR373040
- [9] M. T. Barlow & T. Kumagai, Random walk on the incipient infinite cluster on trees. Illinois J. Math. 50 (2006), no. 1–4, 33–65.Mathematical Reviews (MathSciNet): MR2247823
Zentralblatt MATH: 1110.60090
Project Euclid: euclid.ijm/1258059469 - [10] D. Beihoffer, J. Hendry, A. Nijenhuis & S. Wagon, Faster algorithms for Frobenius numbers. Electron. J. Combin. 12 (2005), R27.
- [11] J. Bennies & G. Kersting, A random walk approach to Galton–Watson trees. J. Theoret. Probab. 13 (2000), no. 3, 777–803.Mathematical Reviews (MathSciNet): MR1785529
Zentralblatt MATH: 0977.60083
Digital Object Identifier: doi:10.1023/A:1007862612753 - [12] E. S. Bernikovich & Yu. L. Pavlov, On the maximum size of a tree in a random unlabelled unrooted forest. Diskret. Mat. 23 (2011), no. 1, 3–20 (Russian). English transl.: Discrete Math. Appl. 21 (2011), no. 1, 1–21.
- [13] P. Bialas & Z. Burda, Phase transition in fluctuating branched geometry. Physics Letters B 384 (1996), 75–80.Mathematical Reviews (MathSciNet): MR1410422
Digital Object Identifier: doi:10.1016/0370-2693(96)00795-2 - [14] P. Bialas, Z. Burda & D. Johnston, Condensation in the backgammon model. Nuclear Physics 493 (1997), 505–516.
- [15] P. Billingsley, Convergence of Probability Measures. Wiley, New York, 1968.Mathematical Reviews (MathSciNet): MR233396
- [16] N. H. Bingham, C. M. Goldie & J. L. Teugels, Regular Variation. Cambridge Univ. Press, Cambridge, 1987.Mathematical Reviews (MathSciNet): MR898871
- [17] C. W. Borchardt, Ueber eine der Interpolation entsprechende Darstellung der Eliminations-Resultante. J. reine und angewandte Mathematik 57 (1860), 111–121.
- [18] É. Borel, Sur l’emploi du théorème de Bernoulli pour faciliter le calcul d’une infinité de coefficients. Application au problème de l’attente à un guichet. C. R. Acad. Sci. Paris 214 (1942), 452–456.Mathematical Reviews (MathSciNet): MR8126
- [19] A. V. Boyd, Formal power series and the total progeny in a branching process. J. Math. Anal. Appl. 34 (1971), 565–566.Mathematical Reviews (MathSciNet): MR281270
Zentralblatt MATH: 0212.19701
Digital Object Identifier: doi:10.1016/0022-247X(71)90096-5 - [20] V. E. Britikov, Asymptotic number of forests from unrooted trees. Mat. Zametki 43 (1988), no. 5, 672–684, 703 (Russian). English transl.: Math. Notes 43 (1988), no. 5–6, 387–394.Mathematical Reviews (MathSciNet): MR954351
- [21] R. Carr, W. M. Y. Goh & E. Schmutz, The maximum degree in a random tree and related problems. Random Struct. Alg. 5 (1994), no. 1, 13–24.Mathematical Reviews (MathSciNet): MR1248172
- [22] A. Cayley, A theorem on trees. Quart. J. Math. 23 (1889), 376–378.
- [23] P. Chassaing & B. Durhuus, Local limit of labeled trees and expected volume growth in a random quadrangulation. Ann. Probab. 34 (2006), no. 3, 879–917.Mathematical Reviews (MathSciNet): MR2243873
Zentralblatt MATH: 1102.60007
Digital Object Identifier: doi:10.1214/009117905000000774
Project Euclid: euclid.aop/1151418487 - [24] P. Chassaing & G. Louchard, Phase transition for parking blocks, Brownian excursion and coalescence. Random Struct. Alg. 21 (2002), no. 1, 76–119.Mathematical Reviews (MathSciNet): MR1913079
- [25] P. Chassaing, J.-F. Marckert & M. Yor, The height and width of simple trees. Mathematics and Computer Science (Versailles, 2000), 17–30, Trends Math., Birkhäuser, Basel, 2000.
- [26] R. M. Corless, G. H. Gonnet, D. E. Hare, D. J. Jeffrey & D. E. Knuth, On the Lambert W function. Adv. Comput. Math. 5 (1996), no. 4, 329–359.Mathematical Reviews (MathSciNet): MR1414285
Zentralblatt MATH: 0863.65008
Digital Object Identifier: doi:10.1007/BF02124750 - [27] H. Cramér, Sur un noveau théorème-limite de la théorie des probabilités. Les sommes et les fonctions de variables aléatoires, Actualités Scientifiques et Industrielles 736, Hermann, Paris, 1938, pp. 5–23.
- [28] D. Croydon, Convergence of simple random walks on random discrete trees to Brownian motion on the continuum random tree. Ann. Inst. H. Poincaré Probab. Statist. 44 (2008), no. 6, 987–1019.Mathematical Reviews (MathSciNet): MR2469332
Zentralblatt MATH: 1187.60083
Digital Object Identifier: doi:10.1214/07-AIHP153
Project Euclid: euclid.aihp/1227287562 - [29] D. Croydon, Scaling limits for simple random walks on random ordered graph trees. Adv. Appl. Probab. 42 (2010), no. 2, 528–558.Mathematical Reviews (MathSciNet): MR2675115
Zentralblatt MATH: 1202.60162
Digital Object Identifier: doi:10.1239/aap/1275055241
Project Euclid: euclid.aap/1275055241 - [30] D. Croydon & T. Kumagai, Random walks on Galton–Watson trees with infinite variance offspring distribution conditioned to survive. Electron. J. Probab. 13 (2008), no. 51, 1419–1441.Mathematical Reviews (MathSciNet): MR2438812
Zentralblatt MATH: 1191.60121
Digital Object Identifier: doi:10.1214/EJP.v13-536 - [31] A. Dembo & O. Zeitouni, Large Deviations Techniques and Applications. 2nd ed., Springer, New York, 1998.Mathematical Reviews (MathSciNet): MR1619036
- [32] L. Devroye, Branching processes and their applications in the analysis of tree structures and tree algorithms. Probabilistic Methods for Algorithmic Discrete Mathematics, eds. M. Habib, C. McDiarmid, J. Ramirez and B. Reed, Springer, Berlin, 1998, pp. 249–314.
- [33] M. Drmota, Random Trees, Springer, Vienna, 2009.Mathematical Reviews (MathSciNet): MR2484382
- [34] T. Duquesne, A limit theorem for the contour process of conditioned Galton–Watson trees. Ann. Probab. 31 (2003), no. 2, 996–1027.Mathematical Reviews (MathSciNet): MR1964956
Zentralblatt MATH: 1025.60017
Digital Object Identifier: doi:10.1214/aop/1048516543
Project Euclid: euclid.aop/1048516543 - [35] B. Durhuus, T. Jonsson & J. F. Wheater, The spectral dimension of generic trees. J. Stat. Phys. 128 (2007), 1237–1260.Mathematical Reviews (MathSciNet): MR2348795
Zentralblatt MATH: 1136.82006
Digital Object Identifier: doi:10.1007/s10955-007-9348-3 - [36] M. Dwass, The total progeny in a branching process and a related random walk. J. Appl. Probab. 6 (1969), 682–686.Mathematical Reviews (MathSciNet): MR253433
Zentralblatt MATH: 0192.54401
Digital Object Identifier: doi:10.2307/3212112 - [37] F. Eggenberger & G. Pólya, Über die Statistik verketteter Vorgänge. Zeitschrift Angew. Math. Mech. 3 (1923), 279–289.
- [38] W. Feller, An Introduction to Probability Theory and its Applications, Volume I, 2nd ed., Wiley, New York, 1957.Mathematical Reviews (MathSciNet): MR88081
- [39] W. Feller, An Introduction to Probability Theory and its Applications, Volume II, 2nd ed., Wiley, New York, 1971.Mathematical Reviews (MathSciNet): MR270403
- [40] P. Flajolet & R. Sedgewick, Analytic Combinatorics. Cambridge Univ. Press, Cambridge, UK, 2009.Mathematical Reviews (MathSciNet): MR2483235
- [41] S. Franz & F. Ritort, Dynamical solution of a model without energy barriers. Europhysics Letters 31 (1995), 507–512
- [42] S. Franz & F. Ritort, Glassy mean-field dynamics of the backgammon model. J. Stat. Phys. 85 (1996), 131–150.
- [43] I. Fujii & T. Kumagai, Heat kernel estimates on the incipient infinite cluster for critical branching processes. Proceedings of German–Japanese Symposium in Kyoto 2006, RIMS Kôkyûroku Bessatsu B6 (2008), pp. 8–95.
- [44] J. Geiger, Elementary new proofs of classical limit theorems for Galton–Watson processes. J. Appl. Probab. 36 (1999), no. 2, 301–309.Mathematical Reviews (MathSciNet): MR1724856
Zentralblatt MATH: 0942.60071
Digital Object Identifier: doi:10.1239/jap/1032374454
Project Euclid: euclid.jap/1032374454 - [45] J. Geiger & L. Kauffmann, The shape of large Galton–Watson trees with possibly infinite variance. Random Struct. Alg. 25 (2004), no. 3, 311–335.Mathematical Reviews (MathSciNet): MR2086163
- [46] B. V. Gnedenko & A. N. Kolmogorov, Limit Distributions for Sums of Independent Random Variables. Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow–Leningrad, 1949 (Russian). English transl.: Addison-Wesley, Cambridge, Mass., 1954.
- [47] G. R. Grimmett, Random labelled trees and their branching networks. J. Austral. Math. Soc. Ser. A 30 (1980/81), no. 2, 229–237.Mathematical Reviews (MathSciNet): MR607933
Digital Object Identifier: doi:10.1017/S1446788700016517 - [48] G. R. Grimmett, The Random-Cluster Model, Springer, Berlin, 2006.Mathematical Reviews (MathSciNet): MR2243761
- [49] A. Gut, Probability: A Graduate Course. Springer, New York, 2005.Mathematical Reviews (MathSciNet): MR2125120
- [50] G. H. Hardy, J. E. Littlewood & G. Pólya, Inequalities. 2nd ed., Cambridge, at the University Press, 1952.Mathematical Reviews (MathSciNet): MR46395
- [51] T. E. Harris, A lower bound for the critical probability in a certain percolation process. Proc. Cambridge Philos. Soc. 56 (1960), 13–20.Mathematical Reviews (MathSciNet): MR115221
Digital Object Identifier: doi:10.1017/S0305004100034241 - [52] L. Holst, Two conditional limit theorems with applications. Ann. Statist. 7 (1979), no. 3, 551–557.Mathematical Reviews (MathSciNet): MR527490
Zentralblatt MATH: 0406.62008
Digital Object Identifier: doi:10.1214/aos/1176344676
Project Euclid: euclid.aos/1176344676 - [53] L. Holst, A unified approach to limit theorems for urn models. J. Appl. Probab. 16 (1979), 154–162.Mathematical Reviews (MathSciNet): MR520945
Zentralblatt MATH: 0396.60027
Digital Object Identifier: doi:10.2307/3213383 - [54] I. A. Ibragimov & Yu. V. Linnik, Independent and Stationary Sequences of Random Variables. Nauka, Moscow, 1965 (Russian). English transl.: Wolters-Noordhoff Publishing, Groningen, 1971.
- [55] S. Janson, Moment convergence in conditional limit theorems. J. Appl. Probab. 38 (2001), no. 2, 421–437.Mathematical Reviews (MathSciNet): MR1834751
Zentralblatt MATH: 0990.60017
Digital Object Identifier: doi:10.1239/jap/996986753
Project Euclid: euclid.jap/996986753 - [56] S. Janson, Asymptotic distribution for the cost of linear probing hashing. Random Struct. Alg. 19 (2001), no. 3–4, 438–471.Mathematical Reviews (MathSciNet): MR1871562
- [57] S. Janson, Cycles and unicyclic components in random graphs. Combin. Probab. Comput. 12 (2003), 27–52.Mathematical Reviews (MathSciNet): MR1967484
Digital Object Identifier: doi:10.1017/S0963548302005412 - [58] S. Janson, Functional limit theorems for multitype branching processes and generalized Pólya urns. Stochastic Process. Appl. 110 (2004), no. 2, 177–245.Mathematical Reviews (MathSciNet): MR2040966
Digital Object Identifier: doi:10.1016/j.spa.2003.12.002 - [59] S. Janson, Random cutting and records in deterministic and random trees. Random Struct. Alg. 29 (2006), no. 2, 139–179.Mathematical Reviews (MathSciNet): MR2245498
- [60] S. Janson, Rounding of continuous random variables and oscillatory asymptotics. Ann. Probab. 34 (2006), no. 5, 1807–1826.Mathematical Reviews (MathSciNet): MR2271483
Zentralblatt MATH: 1113.60017
Digital Object Identifier: doi:10.1214/009117906000000232
Project Euclid: euclid.aop/1163517225 - [61] S. Janson, On the asymptotic joint distribution of height and width in random trees, Studia Sci. Math. Hungar. 45 (2008), no. 4, 451–467.Mathematical Reviews (MathSciNet): MR2641443
Digital Object Identifier: doi:10.1556/SScMath.2007.1064 - [62] S. Janson, Probability asymptotics: notes on notation. Institute Mittag-Leffler Report 12, 2009 spring. arXiv:1108.3924arXiv: 1108.3924
- [63] S. Janson, Stable distributions. Unpublished notes, 2011. arXiv:1112.0220arXiv: 1112.0220
- [64] S. Janson, T. Jonsson & S. Ö. Stefánsson, Random trees with superexponential branching weights. J. Phys. A: Math. Theor. 44 (2011), 485002.Mathematical Reviews (MathSciNet): MR2860856
Zentralblatt MATH: 1236.05180
Digital Object Identifier: doi:10.1088/1751-8113/44/48/485002 - [65] S. Janson, T. Łuczak & A. Ruciński, Random Graphs. Wiley, New York, 2000.Mathematical Reviews (MathSciNet): MR1782847
- [66] N. L. Johnson & S. Kotz, Urn Models and their Application. Wiley, New York, 1977.
- [67] T. Jonsson & S. Ö. Stefánsson, Condensation in nongeneric trees. J. Stat. Phys. 142 (2011), no. 2, 277–313.Mathematical Reviews (MathSciNet): MR2764126
Zentralblatt MATH: 1225.60140
Digital Object Identifier: doi:10.1007/s10955-010-0104-8 - [68] O. Kallenberg, Random Measures. Akademie-Verlag, Berlin, 1983.Mathematical Reviews (MathSciNet): MR818219
- [69] O. Kallenberg, Foundations of Modern Probability. 2nd ed., Springer, New York, 2002.Mathematical Reviews (MathSciNet): MR1876169
- [70] N. I. Kazimirov, On some conditions for absence of a giant component in the generalized allocation scheme. Diskret. Mat. 14 (2002), no. 2, 107–118 (Russian). English transl.: Discrete Math. Appl. 12 (2002), no. 3, 291–302.
- [71] N. I. Kazimirov, Emergence of a giant component in a random permutation with a given number of cycles. Diskret. Mat. 15 (2003), no. 3, 145–159 (Russian). English transl.: Discrete Math. Appl. 13 (2003), no. 5, 523–535.
- [72] N. I. Kazimirov & Yu. L. Pavlov, A remark on the Galton–Watson forests. Diskret. Mat. 12 (2000), no. 1, 47–59 (Russian). English transl.: Discrete Math. Appl. 10 (2000), no. 1, 49–62.
- [73] D. P. Kennedy, The Galton–Watson process conditioned on the total progeny. J. Appl. Probab. 12 (1975), 800–806.Mathematical Reviews (MathSciNet): MR386042
Zentralblatt MATH: 0322.60072
Digital Object Identifier: doi:10.2307/3212730 - [74] H. Kesten, Subdiffusive behavior of random walk on a random cluster. Ann. Inst. H. Poincaré Probab. Statist. 22 (1986), no. 4, 425–487.Mathematical Reviews (MathSciNet): MR871905
- [75] D. E. Knuth, The Art of Computer Programming. Vol. 3: Sorting and Searching. 2nd ed., Addison-Wesley, Reading, Mass., 1998.
- [76] V. F. Kolchin, Random Mappings. Nauka, Moscow, 1984 (Russian). English transl.: Optimization Software, New York, 1986.Mathematical Reviews (MathSciNet): MR865130
- [77] V. F. Kolchin, B. A. Sevast’yanov & V. P. Chistyakov, Random Allocations. Nauka, Moscow, 1976 (Russian). English transl.: Winston, Washington, D.C., 1978.Mathematical Reviews (MathSciNet): MR471016
- [78] T. Kurtz, R. Lyons, R. Pemantle & Y. Peres, A conceptual proof of the Kesten–Stigum Theorem for multi-type branching processes. Classical and Modern Branching Processes (Minneapolis, MN, 1994), IMA Vol. Math. Appl., 84, Springer, New York, 1997, pp. 181–185.Mathematical Reviews (MathSciNet): MR1601737
Zentralblatt MATH: 0868.60068
Digital Object Identifier: doi:10.1007/978-1-4612-1862-3_14 - [79] J.-L. Lagrange, Nouvelle méthode pour résoudre les équations littérales par le moyen des séries. Mémoires de l’Académie royale des Sciences et Belles-Lettres de Berlin, XXIV (1770), 5–73.
- [80] J.-F. Le Gall, Random trees and applications. Probab. Surveys 2 (2005), 245–311.Mathematical Reviews (MathSciNet): MR2203728
Zentralblatt MATH: 1189.60161
Digital Object Identifier: doi:10.1214/154957805100000140
Project Euclid: euclid.ps/1132583290 - [81] J.-F. Le Gall, Random real trees. Ann. Fac. Sci. Toulouse Math. (6) 15 (2006), no. 1, 35–62.
- [82] M. R. Leadbetter, G. Lindgren & H. Rootzén, Extremes and Related Properties of Random Sequences and Processes. Springer-Verlag, New York, 1983.
- [83] T. Łuczak & B. Pittel, Components of random forests. Combin. Probab. Comput. 1 (1992), no. 1, 35–52.Mathematical Reviews (MathSciNet): MR1167294
Zentralblatt MATH: 0793.05109
Digital Object Identifier: doi:10.1017/S0963548300000067 - [84] R. Lyons, R. Pemantle & Y. Peres, Conceptual proofs of LlogL criteria for mean behavior of branching processes. Ann. Probab. 23 (1995), no. 3, 1125–1138.Mathematical Reviews (MathSciNet): MR1349164
Zentralblatt MATH: 0840.60077
Digital Object Identifier: doi:10.1214/aop/1176988176
Project Euclid: euclid.aop/1176988176 - [85] A. Meir & J. W. Moon, On the altitude of nodes in random trees. Canad. J. Math., 30 (1978), 997–1015.
- [86] A. Meir & J. W. Moon, On the maximum out-degree in random trees. Australas. J. Combin. 2 (1990), 147–156.
- [87] A. Meir & J. W. Moon, On nodes of large out-degree in random trees. Congr. Numer. 82 (1991), 3–13.Mathematical Reviews (MathSciNet): MR1152053
- [88] A. Meir & J. W. Moon, A note on trees with concentrated maximum degrees. Utilitas Math. 42 (1992), 61–64. Coorigendum: Utilitas Math. 43 (1993), 253.Mathematical Reviews (MathSciNet): MR1199088
- [89] N. Minami, On the number of vertices with a given degree in a Galton–Watson tree. Adv. Appl. Probab. 37 (2005), no. 1, 229–264.Mathematical Reviews (MathSciNet): MR2135161
Zentralblatt MATH: 1075.60113
Digital Object Identifier: doi:10.1239/aap/1113402407
Project Euclid: euclid.aap/1113402407 - [90] J. W. Moon, On the maximum degree in a random tree. Michigan Math. J. 15 (1968), 429–432.Mathematical Reviews (MathSciNet): MR233729
Digital Object Identifier: doi:10.1307/mmj/1029000098
Project Euclid: euclid.mmj/1029000098 - [91] J. Neveu, Arbres et processus de Galton–Watson. Ann. Inst. H. Poincaré Probab. Statist. 22 (1986), no. 2, 199–207.Mathematical Reviews (MathSciNet): MR850756
- [92] R. Otter, The number of trees. Ann. of Math. (2) 49 (1948), 583–599.Mathematical Reviews (MathSciNet): MR25715
Zentralblatt MATH: 0032.12601
Digital Object Identifier: doi:10.2307/1969046 - [93] R. Otter, The multiplicative process. Ann. Math. Statistics 20 (1949), 206–224.Mathematical Reviews (MathSciNet): MR30716
Zentralblatt MATH: 0033.38301
Digital Object Identifier: doi:10.1214/aoms/1177730031
Project Euclid: euclid.aoms/1177730031 - [94] Yu. L. Pavlov, The asymptotic distribution of maximum tree size in a random forest. Teor. Verojatnost. i Primenen. 22 (1977), no. 3, 523–533 (Russian). English transl.: Th. Probab. Appl. 22 (1977), no. 3, 509–520.Mathematical Reviews (MathSciNet): MR461619
- [95] Yu. L. Pavlov, The limit distributions of the maximum size of a tree in a random forest. Diskret. Mat. 7 (1995), no. 3, 19–32 (Russian). English transl.: Discrete Math. Appl. 5 (1995), no. 4, 301–315.Mathematical Reviews (MathSciNet): MR1361491
- [96] Yu. L. Pavlov, Random Forests. Karelian Centre Russian Acad. Sci., Petrozavodsk, 1996 (Russian). English transl.: VSP, Zeist, The Netherlands, 2000.Mathematical Reviews (MathSciNet): MR1651128
- [97] Yu. L. Pavlov, Limit theorems on sizes of trees in a random unlabelled forest. Diskret. Mat. 17 (2005), no. 2, 70–86 (Russian). English transl.: Discrete Math. Appl. 15 (2005), no. 2, 153–170.
- [98] Yu. L. Pavlov & E. A. Loseva, Limit distributions of the maximum size of a tree in a random recursive forest. Diskret. Mat. 14 (2002), no. 1, 60–74 (Russian). English transl.: Discrete Math. Appl. 12 (2002), no. 1, 45–59.
- [99] J. Pitman, Enumerations of trees and forests related to branching processes and random walks. Microsurveys in Discrete Probability (Princeton, NJ, 1997), DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 41, Amer. Math. Soc., Providence, RI, 1998, pp. 163–180.
- [100] F. Ritort, Glassiness in a model without energy barriers. Physical Review Letters 75 (1995), 1190–1193.
- [101] W. Rudin, Real and Complex Analysis. McGraw-Hill, London, 1970
- [102] S. Sagitov & M. C. Serra, Multitype Bienaymé–Galton–Watson processes escaping extinction. Adv. Appl. Probab. 41 (2009), no. 1, 225–246.Mathematical Reviews (MathSciNet): MR2514952
Digital Object Identifier: doi:10.1239/aap/1240319583
Project Euclid: euclid.aap/1240319583 - [103] R. P. Stanley, Enumerative Combinatorics, Volume 2. Cambridge Univ. Press, Cambridge, 1999.Mathematical Reviews (MathSciNet): MR1676282
- [104] J. J. Sylvester, On the change of systems of independent variables, Quart J. Math. 1 (1857), 42–56.
- [105] L. Takács, A generalization of the ballot problem and its application in the theory of queues. J. Amer. Statist. Assoc. 57 (1962), 327–337.
- [106] L. Takács, Ballots, queues and random graphs. J. Appl. Probab. 26 (1989), no. 1, 103–112.Mathematical Reviews (MathSciNet): MR981255
Zentralblatt MATH: 0673.60012
Digital Object Identifier: doi:10.2307/3214320 - [107] J.C. Tanner, A derivation of the Borel distribution. Biometrika 48 (1961), 222–224.
- [108] J. G. Wendel, Left-continuous random walk and the Lagrange expansion. Amer. Math. Monthly 82 (1975), 494–499.
- [109] Herbert S. Wilf, generatingfunctionology. 2nd ed., Academic Press, 1994.Mathematical Reviews (MathSciNet): MR1277813
The Institute of Mathematical Statistics and the Bernoulli Society

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Protected nodes and fringe subtrees in some random trees
Devroye, Luc and Janson, Svante, Electronic Communications in Probability, 2014 - Local limits of conditioned Galton-Watson trees: the condensation case
Abraham, Romain and Delmas, Jean-François, Electronic Journal of Probability, 2014 - Local limits of conditioned Galton-Watson trees: the infinite spine case
Abraham, Romain and Delmas, Jean-François, Electronic Journal of Probability, 2014
- Protected nodes and fringe subtrees in some random trees
Devroye, Luc and Janson, Svante, Electronic Communications in Probability, 2014 - Local limits of conditioned Galton-Watson trees: the condensation case
Abraham, Romain and Delmas, Jean-François, Electronic Journal of Probability, 2014 - Local limits of conditioned Galton-Watson trees: the infinite spine case
Abraham, Romain and Delmas, Jean-François, Electronic Journal of Probability, 2014 - Cost functionals for large (uniform and simply generated) random trees
Delmas, Jean-François, Dhersin, Jean-Stéphane, and Sciauveau, Marion, Electronic Journal of Probability, 2018 - Invariant measures, Hausdorff dimension and dimension drop of some harmonic measures on Galton-Watson trees
Rousselin, Pierre, Electronic Journal of Probability, 2018 - Fringe trees, Crump–Mode–Jagers branching processes and $m$-ary search trees
Holmgren, Cecilia and Janson, Svante, Probability Surveys, 2017 - Local limits of Markov branching trees and their volume growth
Pagnard, Camille, Electronic Journal of Probability, 2017 - Local limits of large Galton–Watson trees rerooted at a random vertex
Stufler, Benedikt, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, 2019 - Critical percolation and the incipient infinite cluster on Galton-Watson trees
Michelen, Marcus, Electronic Communications in Probability, 2019 - The cut-tree of large Galton–Watson trees and the Brownian CRT
Bertoin, Jean and Miermont, Grégory, The Annals of Applied Probability, 2013