Publicacions Matemàtiques

Hybrid bounds for twists of $GL(3)$ $L$-functions

Qingfeng Sun

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Let $\pi$ be a Hecke-Maass cusp form for $SL(3,\mathbb{Z})$ and $\chi=\chi_1\chi_2$ a Dirichlet character with $\chi_i$ primitive modulo $M_i$. Suppose that $M_1$, $M_2$ are primes such that $\max\{\!(M|t|)^{\!1/3+2\delta/3\!},M^{2/5}|t|^{-9/20\!}, M^{1/2+2\delta}|t|^{-3/4+2\delta}\}(M|t|)^{\varepsilon\!}\!\lt\!M_1\!\lt\! \min\{ (M|t|)^{2/5\!},$ $(M|t|)^{1/2-8\delta}\}(M|t|)^{-\varepsilon}$ for any $\varepsilon\!>\!0$, where $M\!=\!M_1M_2$, $|t|\!\geq\! 1$, and $0\lt\delta\lt 1/52$. Then we have $$ L\left(\frac{1}{2}+it,\pi\otimes \chi\right)\ll_{\pi,\varepsilon} (M|t|)^{3/4-\delta+\varepsilon}. $$

Article information

Source
Publ. Mat., Volume 64, Number 1 (2020), 75-102.

Dates
Received: 17 January 2018
First available in Project Euclid: 3 January 2020

Permanent link to this document
https://projecteuclid.org/euclid.pm/1578020431

Digital Object Identifier
doi:10.5565/PUBLMAT6412003

Mathematical Reviews number (MathSciNet)
MR4047557

Subjects
Primary: 11F66: Langlands $L$-functions; one variable Dirichlet series and functional equations
Secondary: 11M41: Other Dirichlet series and zeta functions {For local and global ground fields, see 11R42, 11R52, 11S40, 11S45; for algebro-geometric methods, see 14G10; see also 11E45, 11F66, 11F70, 11F72}

Keywords
hybrid bounds $GL(3)$ $L$-functions twists

Citation

Sun, Qingfeng. Hybrid bounds for twists of $GL(3)$ $L$-functions. Publ. Mat. 64 (2020), no. 1, 75--102. doi:10.5565/PUBLMAT6412003. https://projecteuclid.org/euclid.pm/1578020431


Export citation