Publicacions Matemàtiques

Conjugacy classes of left ideals of a finite dimensional algebra

Arkadiusz Mȩcel and Jan Okniński

Full-text: Open access

Abstract

Let $A$ be a finite dimensional unital algebra over a field $K$ and let $C(A)$ denote the set of conjugacy classes of left ideals in $A$. It is shown that $C(A)$ is finite if and only if the number of conjugacy classes of nilpotent left ideals in $A$ is finite. The set~$C(A)$ can be considered as a semigroup under the natural operation induced from the multiplication in $A$. If $K$ is algebraically closed, the square of the radical of~$A$ is zero and $C(A)$ is finite, then for every $K$-algebra $B$ such that $C(B)\cong C(A)$ it is shown that $B\cong A$.

Article information

Source
Publ. Mat., Volume 57, Number 2 (2013), 477-496.

Dates
First available in Project Euclid: 12 December 2013

Permanent link to this document
https://projecteuclid.org/euclid.pm/1386857705

Mathematical Reviews number (MathSciNet)
MR3114779

Zentralblatt MATH identifier
1292.16013

Subjects
Primary: 16P10: Finite rings and finite-dimensional algebras {For semisimple, see 16K20; for commutative, see 11Txx, 13Mxx} 16D99: None of the above, but in this section 20M99: None of the above, but in this section

Keywords
Finite dimensional algebra left ideal semigroup conjugacy class

Citation

Mȩcel, Arkadiusz; Okniński, Jan. Conjugacy classes of left ideals of a finite dimensional algebra. Publ. Mat. 57 (2013), no. 2, 477--496. https://projecteuclid.org/euclid.pm/1386857705


Export citation

References

  • F. W. Anderson and K. R. Fuller, “Rings and categories of modules”, Second edition, Graduate Texts in Mathematics 13, Springer-Verlag, New York, 1992. \small\tt DOI: 10.1007/978-1-4612-4418-9.
  • I. Assem, D. Simson, and A. Skowroński, “Elements of the representation theory of associative algebras. Vol. 1. Techniques of representation theory”, London Mathematical Society Student Texts 65, Cambridge University Press, Cambridge, 2006. \small\tt DOI: 10.1017/CBO9780511614309.
  • A. H. Clifford and G. B. Preston, “The algebraic theory of semigroups”, Vol. I, Mathematical Surveys 7, American Mathematical Society, Providence, R.I., 1961.
  • Y. A. Drozd and V. V. Kirichenko, “Finite dimensional algebras”, Translated from the 1980 Russian original and with an appendix by Vlastimil Dlab, Springer-Verlag, Berlin, 1994. \small\tt DOI: 10.1007/978-3-642-76244-4.
  • Y. Hirano, Rings with finitely many orbits under the regular action, in: “Rings, modules, algebras, and abelian groups”, Lecture Notes in Pure and Appl. Math. 236, Dekker, New York, 2004, pp. 343\Ndash347.
  • E. Jespers and J. Okniński, Descending chain conditions andgraded rings, J. Algebra 178(2) (1995), 458\Ndash479. \small\tt DOI: 10.1006/ \small\tt jabr.1995.1360.
  • T. Y. Lam, “A first course in noncommutative rings”, Second edition, Graduate Texts in Mathematics 131, Springer-Verlag, New York, 2001. \small\tt DOI: 10.1007/978-1-4419-8616-0.
  • J. Okniński and L. E. Renner, Algebras with finitely many orbits, J. Algebra 264(2) (2003), 479\Ndash495. \small\tt DOI: 10.1016/S0021- \small\tt 8693(03)00129-7.
  • R. S. Pierce, “Associative algebras”, Graduate Texts in Mathematics 88, Studies in the History of Modern Science 9, Springer-Verlag, New York-Berlin, 1982.
  • M. S. Putcha, “Linear algebraic monoids”, London Mathematical Society Lecture Note Series 133, Cambridge University Press, Cambridge, 1988. \small\tt DOI: 10.1017/CBO9780511600661.