Publicacions Matemàtiques

On non-commuting sets in finite soluble CC-groups

Adolfo Ballester-Bolinches and John Cossey

Full-text: Open access

Abstract

Lower bounds for the number of elements of the largest non-commuting set of a finite soluble group with a CC-subgroup are considered in this paper

Article information

Source
Publ. Mat., Volume 56, Number 2 (2012), 467-471.

Dates
First available in Project Euclid: 19 June 2012

Permanent link to this document
https://projecteuclid.org/euclid.pm/1340127814

Mathematical Reviews number (MathSciNet)
MR2978332

Zentralblatt MATH identifier
1304.20041

Subjects
Primary: 20D60: Arithmetic and combinatorial problems

Keywords
Finite groups non-commuting sets CC-subgroups

Citation

Ballester-Bolinches, Adolfo; Cossey, John. On non-commuting sets in finite soluble CC-groups. Publ. Mat. 56 (2012), no. 2, 467--471. https://projecteuclid.org/euclid.pm/1340127814


Export citation

References

  • J. Almeida, “Finite semigroups and universal algebra”, Translated from the 1992 Portuguese original and revised by the author, Series in Algebra 3, World Scientific Publishing Co., Inc., River Edge, NJ, 1994.
  • J. Almeida, Power semigroups: results and problems, in: “Algebraic Engineering”, (M. Ito and C. Nehaniv, eds.), Proceedings of the International Workshop on Formal Languages and Computer Systems (Kyoto, Japan, 18-21 March, 1997) and the First International Conference on Semigroups and Algebraic Engineering (Aizu, Japan, 24-28 March, 1997), World Scientific, Singapore, 1999, pp. 399\Ndash415.
  • J. Almeida, Profinite semigroups and applications. Notes taken by Alfredo Costa, in: “Structural theory of automata, semigroups, and universal algebra”, NATO Sci. Ser. II Math. Phys. Chem. 207,Springer, Dordrecht, 2005, pp. 1\Ndash45. \small\tt DOI: 10.1007/1-4020-3817- \small\tt 8${}_{-}$1.
  • J. Almeida and P. Weil, Profinite categories and semidirect products, J. Pure Appl. Algebra 123(1–3) (1998), 1\Ndash50. \small\tt DOI: 10.1016/S0022-4049(96)00083-7.
  • C. J. Ash, Inevitable graphs: a proof of the type II conjecture and some related decision procedures, Internat. J. Algebra Comput. 1(1) (1991), 127\Ndash146. \small\tt DOI: 10.1142/S0218196791000079.
  • K. Auinger and B. Steinberg, On the extension problem for partial permutations, Proc. Amer. Math. Soc. 131(9) (2003), 2693\Ndash2703 (electronic). \small\tt DOI: 10.1090/S0002-9939-03-06860-6.
  • K. Auinger and B. Steinberg, Constructing divisions into power groups, Theoret. Comput. Sci. 341(1–3) (2005), 1\Ndash21. \small\tt DOI: 10.1016/j.tcs.2004.12.027.
  • K. Auinger and P. G. Trotter, Pseudovarieties, regular semigroups and semidirect products, J. London Math. Soc. (2) 58(2) (1998), 284\Ndash296. \small\tt DOI: 10.1112/S0024610798006589.
  • K. Henckell and J. Rhodes, The theorem of Knast, the $PG=BG$ and type-II conjectures, in: “Monoids and semigroups with applications” (Berkeley, CA, 1989), World Sci. Publ., River Edge, NJ, 1991, pp. 453\Ndash463.
  • J. Ka\vdourek, An upper bound for the power pseudovariety $\mathbf{PCS}$,Monatsh. Math. 166(3–4) (2012), 411\Ndash440. \small\tt DOI: 10.1007/s00605- \small\tt 011-0285-5.
  • J.-É. Pin, $BG=PG$: a success story, in: “Semigroups, formal languages and groups” (York, 1993), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 466, Kluwer Acad. Publ., Dordrecht, 1995, pp. 33\Ndash47.
  • J.-É. Pin, Eilenberg's theorem for positive varieties of languages, (Russian), Izv. Vyssh. Uchebn. Zaved. Mat. 1 (1995), 80\Ndash90; translation in Russian Math. (Iz. VUZ) 39(1) (1995), 74\Ndash83.
  • J.-É. Pin and P. Weil, Profinite semigroups, Ma\softlcev products,and identities, J. Algebra 182(3) (1996), 604\Ndash626. \small\tt DOI: 10.1006/ \small\tt jabr.1996.0192.
  • J. Rhodes and B. Steinberg, “The $q$-theory of finite semigroups”, Springer Monographs in Mathematics, Springer, New York, 2009. \small\tt DOI: 10.1007/b104443.
  • B. Steinberg, A note on the power semigroup of a completely simple semigroup, Semigroup Forum 76(3) (2008), 584\Ndash586. \small\tt DOI: 10.1007/s00233-008-9044-x.
  • B. Tilson, Categories as algebra: an essential ingredient in the theory of monoids, J. Pure Appl. Algebra 48(1–2) (1987), 83\Ndash198. \small\tt DOI: 10.1016/0022-4049(87)90108-3.
  • P. Weil, Some results on the dot-depth hierarchy, Semigroup Forum 46(3) (1993), 352\Ndash370. \small\tt DOI: 10.1007/BF02573578.