Publicacions Matemàtiques

Some Remarks About Parametrizations of Intrinsic Regular Surfaces in the Heisenberg Group

Francesco Bigolin and Davide Vittone

Full-text: Open access

Abstract

We prove that, in general, ${\mathbb H}$-regular surfaces in the Heisenberg group $\mathbb{H}^1$ are not bi-Lipschitz equivalent to the plane ${\mathbb R}^2$ endowed with the ``parabolic'' distance, which instead is the model space for $C^1$ surfaces without characteristic points. In Heisenberg groups $\mathbb{H}^n$, ${\mathbb H}$-regular surfaces can be seen as intrinsic graphs: we show that such parametrizations do not belong to Sobolev classes of metric-space valued maps.

Article information

Source
Publ. Mat., Volume 54, Number 1 (2010), 159-172.

Dates
First available in Project Euclid: 8 January 2010

Permanent link to this document
https://projecteuclid.org/euclid.pm/1262962138

Mathematical Reviews number (MathSciNet)
MR2603594

Zentralblatt MATH identifier
1188.53028

Subjects
Primary: 53C17: Sub-Riemannian geometry 54E40: Special maps on metric spaces

Keywords
Bi-Lipschitz parametrizations ${\mathbb H}$-regular surfaces Heisenberg group

Citation

Bigolin, Francesco; Vittone, Davide. Some Remarks About Parametrizations of Intrinsic Regular Surfaces in the Heisenberg Group. Publ. Mat. 54 (2010), no. 1, 159--172. https://projecteuclid.org/euclid.pm/1262962138


Export citation

References

  • L. Ambrosio and B. Kirchheim, Rectifiable sets in metric and Banach spaces, Math. Ann. 318(3) (2000), 527\Ndash555.
  • L. Ambrosio, F. Serra Cassano, and D. Vittone, Intrinsic regular hypersurfaces in Heisenberg groups, J. Geom. Anal. 16(2) (2006), 187\Ndash232.
  • L. Ambrosio and P. Tilli, “Topics on analysis in metric spaces”, Oxford Lecture Series in Mathematics and its Applications 25, Oxford University Press, Oxford, 2004.
  • Z. M. Balogh, Size of characteristic sets and functions with prescribed gradient, J. Reine Angew. Math. 564 (2003), 63\Ndash83.
  • F. Bigolin and F. Serra Cassano, Intrinsic regular graphs in Heisenberg groups vs. weak solutions of non linear first-order PDEs, Adv. Calc. Var. (to appear).
  • L. Capogna, D. Danielli, S. D. Pauls, and J. Tyson, “An introduction to the Heisenberg group and the sub-Riemannian isoperimetric problem”, Progress in Mathematics 259, Birkhäuser Verlag, Basel, 2007.
  • G. Citti and M. Manfredini, Implicit function theorem in Carnot-Carathéodory spaces, Commun. Contemp. Math. 8(5) (2006), 657\Ndash680.
  • D. R. Cole and S. D. Pauls, $C^1$ hypersurfaces of the Heisenberg group are $N$-rectifiable, Houston J. Math. 32(3) (2006), 713\Ndash724 (electronic).
  • H. Federer, “Geometric measure theory”, Die Grundlehren der mathematischen Wissenschaften 153, Springer-Verlag New York Inc., New York, 1969.
  • B. Franchi, R. Serapioni, and F. Serra Cassano, Rectifiability and perimeter in the Heisenberg group, Math. Ann. 321(3) (2001), 479\Ndash531.
  • B. Franchi, R. Serapioni, and F. Serra Cassano, Regular submanifolds, graphs and area formula in Heisenberg groups, Adv. Math. 211(1) (2007), 152\Ndash203.
  • B. Kirchheim and F. Serra Cassano, Rectifiability and parameterization of intrinsic regular surfaces in the Heisenberg group, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 3(4) (2004), 871\Ndash896.
  • P. Mattila, R. Serapioni, and F. Serra Cassano, Characterizations of intrinsic rectifiability in Heisenberg groups, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) (to appear).
  • S. D. Pauls, A notion of rectifiability modeled on Carnot groups, Indiana Univ. Math. J. 53(1) (2004), 49\Ndash81.
  • D. Vittone, Submanifolds in Carnot groups, Tesi di Perfezionamento, Scuola Normale Superiore, Pisa (2008).