Publicacions Matemàtiques

Similarity of Operators and Geometry of Eigenvector Bundles

Hyun-Kyoung Kwon and Sergei Treil

Full-text: Open access


We characterize the contractions that are similar to the backward shift in the Hardy space $H^2$. This characterization is given in terms of the geometry of the eigenvector bundles of the operators.

Article information

Publ. Mat., Volume 53, Number 2 (2009), 417-438.

First available in Project Euclid: 20 July 2009

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 47A99: None of the above, but in this section
Secondary: 47B32: Operators in reproducing-kernel Hilbert spaces (including de Branges, de Branges-Rovnyak, and other structured spaces) [See also 46E22] 30D55 53C55: Hermitian and Kählerian manifolds [See also 32Cxx]

Similarity curvature of the eigenvector bundle backward shift Carleson measure reproducing kernel


Kwon, Hyun-Kyoung; Treil, Sergei. Similarity of Operators and Geometry of Eigenvector Bundles. Publ. Mat. 53 (2009), no. 2, 417--438.

Export citation


  • M. Andersson, The corona theorem for matrices, Math. Z. 201(1) (1989), 121\Ndash130.
  • J.-P. Aubin, “Applied functional analysis”, Translated from the French by Carole Labrousse, With exercises by Bernard Cornet and Jean-Michel Lasry, John Wiley & Sons, New York-Chichester-Brisbane, 1979.
  • L. Carleson, Interpolations by bounded analytic functions and the corona problem, Ann. of Math. (2) 76 (1962), 547\Ndash559.
  • M. J. Cowen and R. G. Douglas, Complex geometry and operator theory, Acta Math. 141(3–4) (1978), 187\Ndash261.
  • P. Griffiths and J. Harris, “Principles of algebraic geometry”, Reprint of the 1978 original, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1994.
  • N. K. Nikolski, “Operators, functions, and systems: an easy reading. Vol. 1. Hardy, Hankel, and Toeplitz”, Translated from the French by Andreas Hartmann, Mathematical Surveys and Monographs 92, American Mathematical Society, Providence, RI, 2002.
  • N. K. Nikolski, “Operators, functions, and systems: an easy reading. Vol. 2. Model operators and systems”, Translated from the French by Andreas Hartmann and revised by the author, Mathematical Surveys and Monographs 93, American Mathematical Society, Providence, RI, 2002.
  • N. K. Nikolski, “Treatise on the shift operator. Spectral function theory”, With an appendix by S. V. Hruščev and V. V. Peller, Translated from the Russian by Jaak Peetre, Grundlehren der Mathematischen Wissenschaften 273, Springer-Verlag, Berlin, 1986.
  • B. Sz.-Nagy and C. Foiaş, “Harmonic analysis of operators on Hilbert space”, Translated from the French and revised North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York; Akadémiai Kiadó, Budapest, 1970.
  • B. Sz.-Nagy and C. Foiaş, On the structure of intertwining operators, Acta Sci. Math. (Szeged) 35 (1973), 225\Ndash254.
  • B. Sz.-Nagy and C. Foiaş, Sur les contractions de l'espace de Hilbert. X. Contractions similaires à des transformations unitaires, Acta Sci. Math. (Szeged) 26 (1965), 79\Ndash91.
  • S. R. Treil, Angles between co-invariant subspaces, and the operator corona problem. The Szökefalvi-Nagy problem, (Russian), Dokl. Akad. Nauk SSSR 302(5) (1988), 1063\Ndash1068; translation in: Soviet Math. Dokl. 38(2) (1989), 394\Ndash399.
  • S. R. Treil, Geometric methods in spectral theory of vector-valued functions: some recent results, in: “Toeplitz operators and spectral function theory”, Oper. Theory Adv. Appl. 42, Birkhäuser, Basel, 1989, pp. 209\Ndash280.
  • S. R. Treil, Unconditional bases of invariant subspaces of a contraction with finite defects, Indiana Univ. Math. J. 46(4) (1997), 1021\Ndash1054.
  • S. R. Treil, An operator Corona theorem, Indiana Univ. Math. J. 53(6) (2004), 1763\Ndash1780.
  • S. R. Treil, Lower bounds in the matrix Corona theorem and the codimension one conjecture, Geom. Funct. Anal. 14(5) (2004), 1118\Ndash1133.
  • S. R. Treil and B. D. Wick, Analytic projections, corona problem and geometry of holomorphic vector bundles, J. Amer. Math. Soc. 22(1) (2009), 55\Ndash76.
  • M. Uchiyama, Curvatures and similarity of operators with holomorphic eigenvectors, Trans. Amer. Math. Soc. 319(1) (1990), 405\Ndash415.