Pacific Journal of Mathematics

Some remarks on varieties in polydiscs and bounded holomorphic functions.

E. L. Stout

Article information

Source
Pacific J. Math., Volume 32, Number 3 (1970), 813-820.

Dates
First available in Project Euclid: 31 May 2005

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1117559016

Mathematical Reviews number (MathSciNet)
MR0257395

Zentralblatt MATH identifier
0203.08301

Subjects
Primary: 32.44

Citation

Stout, E. L. Some remarks on varieties in polydiscs and bounded holomorphic functions. Pacific J. Math. 32 (1970), no. 3, 813--820. https://projecteuclid.org/euclid.pjm/1117559016


Export citation

References

  • [1] H. Alexander, Extending bounded holomorphic functionsfrom certainsubvarieties of a polydisc, Pacific J. Math. 29 (1969), 485-490.
  • [2] E. Bishop, Analyticityin certain Banach algebras, Trans. Amer. Math. Soc. 102 (1962), 507-544.
  • [3] B. Banaschewski, Analytic discs in the maximal ideal space of a Banach algebra. Bull. Acad. Polonaise des Sciences, Ser. Math. Astro., Phy. 14 (1966), 137-144.
  • [4] R. C. Gunning and H. Rossi, Analyticfunctionsof several complex variables, Prentice-Hall, Englewood Cliffs, 1965.
  • [5] K. Hoffman, Banach spaces of analytic functions, Prentice-Hall, Englewood Cliffs,. 1962.
  • [6] W. Rudin, Subalgebras of spaces of continuous functions, Proc. Amer. Math. Soc 7 (1956), 825-830.
  • [7] W. Rudin, Zero-sets in polydiscs, Bull. Amer. Math. Soc. 73 (1967), 580-83.
  • [8] W. Rudin, Function theory in polydiscs, W. A. Benjamin, Inc., New York, 1969.
  • [9] W. Rudin and E. L. Stout, Modules over polydisc algebras, Trans. Amer. Math. Soc. 138 (1969), 327-342.
  • [10] E. L. Stout, On some algebras of analytic functionson finite openRiemann surfaces, Math. Zeit. 92 (1966), 366-379.
  • [11] J. Wermer, Polynomial approximationon an arc in C3, Ann. of Math. (2) 62 (1955), 269-270.