Pacific Journal of Mathematics

The Borel property of summability methods.

J. D. Hill

Article information

Source
Pacific J. Math., Volume 1, Number 3 (1951), 399-409.

Dates
First available in Project Euclid: 14 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1103052108

Mathematical Reviews number (MathSciNet)
MR0043920

Zentralblatt MATH identifier
0043.28603

Subjects
Primary: 40.0X

Citation

Hill, J. D. The Borel property of summability methods. Pacific J. Math. 1 (1951), no. 3, 399--409. https://projecteuclid.org/euclid.pjm/1103052108


Export citation

References

  • [1] R. P. Agnew, Methods of summability which evaluate sequences of zeros and ones summable ClfAmer. J. Math. 70 (1948), 75-81.
  • [2] E. Borel, Les probabilities denombrables et leurs applications arithmetiques, Rend. Circ. Mat. Palermo 27 (1909), 247-271.
  • [3] E. Borel, Traite du calcul des probabilities et de ses applications, vol. II, part 1, Gautier-Villars, Paris, 1926,
  • [4] R.C.Buck and H.Pollard, Convergence and summability properties of subsequences. Bull. Amer. Math. Soc. 49 (1943), 924-931.
  • [5] D.Hill, Summability of sequences of Q's and Vs, Ann. of Math, 46 (1945), 556-562,
  • [6] S. Kaczmarz and H. Steinhaus, Theorie der Orthogonalreihen, Warsaw, 1935.
  • [7] A. Khintchine, ber dyadische Bruche, Math. Z. 18 (1923), 109-116.
  • [8] M. Riesz, Sur Inequivalence de certaines methodes de sommation, Proc. London Math. Soc. (2) 22 (1923), 412-419.
  • [9] C. Visser, The law of nought-or-one, Studia Math. 7 (1938), 143-159.