Pacific Journal of Mathematics

Gradient methods of maximization.

Herman Chernoff and Jean Bronfenbrenner Crockett

Article information

Source
Pacific J. Math., Volume 5, Number 1 (1955), 33-50.

Dates
First available in Project Euclid: 14 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1103044606

Mathematical Reviews number (MathSciNet)
MR0075676

Zentralblatt MATH identifier
0066.10103

Subjects
Primary: 65.0X

Citation

Crockett, Jean Bronfenbrenner; Chernoff, Herman. Gradient methods of maximization. Pacific J. Math. 5 (1955), no. 1, 33--50. https://projecteuclid.org/euclid.pjm/1103044606


Export citation

References

  • [1] M. Bocher, Introduction to higher algebra, The Macmillan Co., New York, 1907.
  • [2] D.J. Finney, Probit analysis,Cambridge University Press, Cambridge, England, 1952.
  • [3] A. Cauchy, Methode generale pour la resolution des systemesd*equations simul- tane'es, C. R. Acad. Sci. Paris 25 (1847), 536-538.
  • [4] H.B. Curry, The method of steepestdescent for non-linear minimization problems, Quart. Appl. Math. 2 (1944), 258-261.
  • [5] T. C. Koopmans, H. Rubin, and R. B. Leipnik, Measuring the equationssystems of dynamic economics, Statistical Inference in Dynamic Economic Models, Cowles Commission Monograph 10, edited by T. C. Koopmans, John Wiley and Sons, New York, 1950.
  • [6] H. Chernoff and N. Divinsky, The computation of maximum-likelihood estimates of linear structural equations, Chapter 10 in Studies in Econometric Method, Cowles Commission Monograph 14, Wm. C. Hood and T. C. Koopmans editors, John \Siley and Sons, Inc. New York, 1953.
  • [7] G. Temple, The general theory of relaxation methods applied to linearsystems, Proc. Roy. Soc. London, Ser. A, 169 (1938-1939), 476-500.
  • [8] G.E. Forsythe, Solving linear algebraic equations can be interesting, Bull. Amer. Math. Soc. 59 (1953), 299-329.